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Abstract—With the prevailing of smart devices (e.g., smart
phone, routers, cameras), more and more programs are ported
from traditional desktop platform to embedded hardware with
ARM or MIPS architecture. While the compiled binary code
differs significantly due to the variety of CPU architectures,
these ported programs share the same code base of the desktop
version. Thus it is feasible to utilize the program of commodity
computer to help understand those cross-compiled binaries and
locate functions with similar semantics. However, as instruction
sets of different architectures are generally incomparable, it
is difficult to conduct a static cross-architecture binary code
similarity comparison.

To address, we propose a semantic-based approach to fulfill
this target. We dynamically extract the signature, which is
composed of conditional operations behaviors as well as system
call information, from binaries on different platforms with the
same manner. Then the similarity of signatures is measured to
help identify functions in ported programs. We have implemented
the approach in MOCKINGBIRD, an automated analysis tool to
compare code similarity between binaries across architectures.
MOCKINGBIRD supports mainstream architectures and is able
to analyze ELF executables on Linux platform. We have evaluated
MOCKINGBIRD with a set of popular programs with cross-
compiled versions. The results show our approach is not only
effective for dealing with this new issue of cross-architecture
binary code comparison, but also improves the accuracy of
similarity based function identification due to the utilization of
semantic information.

I. INTRODUCTION

Detecting code with similar functionality contributes enor-
mously to the understanding of programs, especially for binary
executables of which the reverse engineering is extremely time-
consuming. If programs share same code base (e.g., latest
version and historical version of a software product) and one
of them has been analyzed, the knowledge of this analyzed
program can be transferred to the analysis of the others and
helps save the time of analyzing similar or identical part of
code. Nonetheless, even for binary code of one specific pro-
gram, there exist different versions with signification variation.
There are two main reasons leading to that variation. First,
more and more programs nowadays are cross-compiled for
different CPU architectures to support not only commodity
computers but also smart devices such as smart phones and
routers. Those cross-compiled binaries from different architec-
tures vary in instruction sets, code offsets and function calling
conventions. The wide diversity of different Instruction Set
Architectures (ISA) makes it hard to compare binary code
of one particular architecture to that of another architecture
statically even if they are compiled with the same code base.

Moreover, during the compilation process the same code base
may be compiled with different compilers using different
configurations (e.g., different optimization levels). This also
brings significant change to the representations of binaries. In
this situation, conducting static syntactic-based code similarity
comparison is less effective or even infeasible.

To tackle the obstacle of syntactic difference and achieve
accurate code similarity detection, analysts make use of code
semantics to help compare different functions. Various se-
mantic features are made use of to facility semantic-based
comparisons. However, they are not suitable for above user
case. The approach based on system call birthmarks [26],
[27] suffers from insufficiency of system calls. Approaches
leveraging symbolic formulas [14], [30] is difficult to compare
binaries across architectures, as there is no mature framework
for symbolic execution on different ISAs. The feature of core
values [10], [29] requires source code of programs under test,
which is infeasible for binary analysis.

In this paper, we address the problem by proposing a
novel and generic semantic signature. Our proposed semantic
signature is a sequence of two dynamic features: Comparison
Operand Pairs (COP) and System Call Attributes (SCA). A
COP is a pair of operand values belonging to a comparison
instruction (e.g., the CMP x86 instruction) whose operation
result directly decides the following control flow. SCAs consist
of names and argument values of all system calls invoked
in an execution, which reflect the behaviors of the program.
These two features are both dynamic runtime information
and are less influenced by the implementation variance or
instruction set difference. Thus they are suitable for fin-
gerprinting certain functionality. In addition, the generation
of our semantic signature leverages VEX-IR, a RISC-like
intermediate representation defined by the Valgrind [18] open-
source dynamic binary instrumentation tool, to achieve multi-
architecture analysis through representing instruction sets of
different architectures with a uniform style. Thus we can
instrument programs with different instruction sets and extract
semantic signatures dynamically.

Suppose we have complete knowledge of a binary compiled
for one platform from a code base, we can utilize this version
as a template to help identify particular functions of a target
binary compiled from the same code base (but with different
instruction set, and compiled using different compilers with
different configuration). Generally, although the source code
is unavailable, it is feasible to execute the target binary on
different platforms, which guarantees us the capability of
semantic signature extracting. We first translate both template
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binary and target binary into VEX-IR and use Valgrind to
instrument those executables. These two executables are then
executed by given exactly the same input and executions are
monitored by our instrumentation module, which is responsible
for extracting COPs and SCAs. The extracted runtime infor-
mation and the translated IR are finally analyzed to generate
normalized semantic signatures for each function. With the
generated signatures, we can compare the code similarity
between template binary and target binary by calculating the
distance of function signature sequence, and detect the most
similar function pairs. In this way, we are able to locate
the corresponding functions in target binary with the prior
knowledge of the functions in template binary and therefore
decrease the cost of unnecessary analysis.

We have built a prototype system called MOCKINGBIRD

to fulfill the mentioned code similarity detection automati-
cally. To show the effectiveness, we evaluate MOCKINGBIRD

with 10 different utilities including Internet downloader, data
compressor, code interpreter, e-mail client, and file format
converter. These utilities are all cross-compiled to different
architectures and are compiled with variant compiling con-
figurations to generate multiple versions. MOCKINGBIRD is
able to monitor their executions, extract semantics signatures
and compare the code similarity, producing accurate matching
results. Compared to the results in [19], which only achieves
a 32.1% accuracy rate for the comparison between OpenSSL
binaries for ARM and MIPS , our tool gives an accuracy rate
of 82.1% when identifying OpenSSL relevant functions. While
the accuracy rate of BLEX [6], another tool that employs the
blanket execution technique, is 64% when it functions as a
search engine, MOCKINGBIRD produces an average accuracy
rate of 78.47%. These results indicate that our approach is
promising on cross-architecture code similarity detection.

In summary, the contributions of this work are as follows:

• We propose a generic approach to handle binaries
compiled for various architectures and fulfill code
similarity detection. Our approach addresses the in-
struction set diversity through adopting VEX-IR and
semantic signatures based analysis, which is suitable
for searching similar functions among not only cross-
compiled programs but also those with difference
compilation configurations.

• We define a fine-grained semantic signature for
function-level similarity detection. To improve the
generality, we further introduce a series of tech-
niques including Pointer abstraction, Canary removal,
Boundary unifying, and Loop compression to normal-
ize signatures and thus make our comparison more
adaptive.

• We implement MOCKINGBIRD reverse engineering
tool to support program analysis and code comparison
across three mainstream architectures (IA-32, ARM
and MIPS). Our evaluation on daily use utilities shows
that our approach not only improves the average accu-
racy for common application scenarios, but also pro-
vides analyst a new methodology on cross-architecture
program analysis.

II. APPROACH

In this section, we introduce our approach to understand
semantics of particular binary function by similar code com-
parison. Suppose we have understood the semantics of func-
tions in a binary (the template binary). To understand partic-
ular functions of other binaries (the target binary) compiled
from the same code base but possibly for other architectures
and with different compiling configurations, we compare the
target binary to the template to locate functions of similar
semantics. The comparison mainly relies on our proposed
semantic signatures (Section II-A), and starts from providing
the template and target binaries with the same input to extract
semantic signature for each function executed (Section II-B).
Then, the extracted signatures are normalized considering the
semantic differences resulted from architectures and compiling
configurations (Section II-C). Afterwards, signatures of target
functions are compared to those of template functions, and
similarity scores are calculated (Section II-D). Finally, we
obtain a list of scores for every target function, and the pair
of functions with the highest score is treated as a match.

A. Semantic Signatures

We mainly define the semantic signature with the concepts
of COP and SCA. At the assembly level, a COP is the
value pair of operands of the comparison instruction, which
introduces condition test in an execution and decides the
jump target of following branch instruction. For instance, the
corresponding IA-32 code in Table I for Line 2 of Figure I
is cmp [ebp+arg_0], 0, and the value of those two
operands ([ebp+arg 0] and 0) is defined as a COP. These
two values are compared by the CMP instruction, and the
result of comparison decides whether the conditional jump (to
loc 804848A) in the following JLE instruction is employed.

Comparison instructions convert control dependencies into
data dependencies. When semantic-similar functions are ex-
ecuted with the same input, the possibility that observed
behaviors are similar is high [6]. In our cases, if two binaries
compiled from the same code base show equal behaviors with
the same input, the similarity are reflected by comparisons
in those two executions that decide control flows. Thus, we
utilize COP sequence to detect similarity of dynamic behavior
of program and collect COP sequence to help build semantic
signatures. Take the code in Listing 1 as an example. If the
value of parameter num is 5, then for different assembly code
compiled from the same source code in Table I, the extracted
COP sequences are all {(5, 0), (1, 0)}.

In addition, our semantic signature contained SCA is
composed of name and arguments of a system call invoked
in an execution, which also indicates the semantics of that
execution. Listing 2 presents the system calls related to func-
tion in Listing 1. Due to the printf function at Line 5 in
Listing 1, sys write is invoked at Line 4, indicating that the
program performed a write operation in that execution. And the
corresponding SCA is represented as (”sys write”, Hash(”1,
tag, 10”)). Note that the second arguments of sys write,
0x4038000, is the address of variable num and such data
pointers may differ from each execution because of address
randomization. Thus we normalize these pointer values as tag
(which is detailed in Section II-C), hash the argument list of
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TABLE I: Assembly code of binaries of function in Listing 1 and corresponding IR

IA-32 ARM MIPS

Assembly
Code

var_C = dword ptr -0Ch
arg_0 = dword ptr 8
push ebp
mov ebp, esp
sub esp, 28h
cmp [ebp+arg_0], 0 ; COP
jle short loc_804848A
mov eax, [ebp+arg_0]
and eax, 1
mov [ebp+var_C], eax
cmp [ebp+var_C], 0 ; COP
jz short loc_804848A
mov eax, [ebp+arg_0]
mov [esp+4], eax
mov dword ptr [esp], offset format
call _printf
loc_804848A:
leave
retn

var_C = -0xC
var_4 = -4
PUSH {R7,LR}
SUB SP, SP, #0x10
ADD R7, SP, #0
STR R0, [R7,#0x10+var_C]
LDR R3, [R7,#0x10+var_C]
CMP R3, #0 ; COP
BLE loc_841C
LDR R3, [R7,#0x10+var_C]
AND.W R3, R3, #1
STR R3, [R7,#0x10+var_4]
LDR R3, [R7,#0x10+var_4]
CMP R3, #0 ; COP
BEQ loc_841C
MOV R3, #unk_84A4
MOV R0, R3 ; format
LDR R1, [R7,#0x10+var_C]
BLX printf

loc_841C
AND.W R7, R7, #0x10
MOV SP, R7
POP {R7,PC}

var_10 = -0x10
var_8 = -8
var_4 = -4
arg_0 = 0
addiu $sp, -0x28
sw $ra, 0x28+var_4($sp)
sw $fp, 0x28+var_8($sp)
move $fp, $sp
sw $a0, 0x28+arg_0($fp)
lw $v0, 0x28+arg_0($fp)
blez $v0, loc_4006E0 # COP
or $at, $zero
lw $v0, 0x28+arg_0($fp)
andi $v0, 1
sw $v0, 0x28+var_10($fp)
lw $v0, 0x28+var_10($fp)
beqz $v0, loc_4006E0 # COP
or $at, $zero
la $v0, unk_4008E0
move $a0, $v0 # format
lw $a1, 0x28+arg_0($fp)
jal printf
or $at, $zero

loc_4006E0:
move $sp, $fp
lw $ra, 0x28+var_4($sp)
lw $fp, 0x28+var_8($sp)
addiu $sp, 0x28
jr $ra
or $at, $zero

VEX-IR

t10 = LDle:I32(t21) ; load num
t31 = CmpLE32S(t10,0x0:I32) ; COP
if (t31) { PUT(68) = 0x804848A:I32 }
t1 = And32(t10,0x1:I32)
t25 = CmpEQ32(t1,0x0:I32) ; COP
if (t25) { PUT(68) = 0x804848A:I32 }

t65 = LDle:I32(t44) ; load num
t67 = CmpLE32S(t65,0x0:I32) ; COP
if (t67) { PUT(68) = 0x841C:I32 }
t7 = And32(t65,0x1:I32)
t57 = CmpEQ32(t7,0x0:I32) ; COP
if (t57) { PUT(68) = 0x841C:I32 }

t20 = LDle:I32(t18) ; load num
t21 = CmpLE32S(t20,0x0:I32) ; COP
if (t21) { PUT(128) = 0x4006E0:I32 }
t7 = And32(t6,0x1:I32)
t15 = CmpEQ32(t7,0x0:I32) ; COP
if (t15) { PUT(128) = 0x4006E0:I32 }

Listing 1: A function for printing positive odd number

1 void print_positive_odd(int num){
2 if (num > 0){
3 int flag = num & 1;
4 if (flag != 0)
5 printf("%d\n", num);
6 return;
7 }
8 }

Listing 2: System call log for code in Listing 1 on IA-32

1 sys_read (0, 0x4037000, 1024)
2 sys_fstat64 (1, 0xbeb86da0)
3 sys_mmap2 (0x0, 4096, 3, 34, -1, 0)
4 sys_write (1, 0x4038000, 10)

each system call using simple string hash function, and form
the SCA along with the name of the system call.

B. Signatures Extraction

We extract COP from executed VEX-IR traces, which are
obtained by instrumenting binaries. Because VEX-IR unifies
assembly code for different architectures with uniform syntax,
it becomes much easier to extract COP. As presented in Table I,
at the assembly level, COPs of different architectures are
expressed by distinct instructions. After the unification, they
are all involved in comparison statements (CmpLE32S and
CmpEQ32) of IR. We observe that COP is usually an operands
pair of comparison statements: Cmp (integer comparison ) and
Cmpf (float comparison). So we just emulate the execution

with IR trace, and locate those comparison statements whose
operands are potential COPs. They are finally recorded as
COP once encountering control flow related statements whose
operation depends on values of them.

Control flow related statements include conditional exit
statement, guard store statement, guard load statement and
if then else statement. Conditional exit statement appears as
exit statement of an IR code block. Its format is:

if (<guard>) goto <dst>

where guard is a conditional expression. If it is true, the
program jumps to address stored in dst, or executes the next
statement sequentially if it is false. Conditional exit statement
is translated from conditional jumps of assembly code, such
as jz of IA-32, beq of MIPS, etc. In Table I, all control flow
related statements are conditional exit statements, and for IR
translated from IA-32 code, (t10, 0x0) is recorded as COP
only when the followed conditional exit statement is executed,
as the statement depends on t31, the operation result of (t10,
0x0).

The formats of guard store and guard load statements are:

if (<guard>) ST(<addr>) = <data>
if (<guard>) (LD(<addr>)) else <alt>

where guard is a conditional expression as well. addr is the
address to be written to or read from. data is the data to be
stored, and alt is the value to be load if guard is false. Lastly,
if then else statement is represented as:
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ITE (<cond>, <iftrue>, <iffalse>)

The iftrue expression is performed if cond is true, or the iffalse
expression is performed.

C. Normalization

For the sake of accuracy and efficiency, we introduce
strategies to normalize semantic signatures into a more general
form to ease comparisons in the next step. On one hand,
pointer values may differ from each execution because of
address randomization and different architectures. Like address
randomization, stack canary value is a security mechanism and
such value is also unrelated to semantics. Besides, VEX-IR
also introduces instructions of the same semantics but different
representations. Thus, we need to normalize above cases to
ensure accuracy of sequence comparisons. On the other hand,
COPs introduced by loops may enlarge the size of signatures
tremendously, to improve efficiency, we normalize COPs of a
loop into a reduced form. Details of normalization strategies
are as followed.

• Pointer Abstraction. Pointer values appearing in
COP commonly point to code in .text section or data
in .data section of the executables. So we normalize
values among intervals of above sections into tags,
and equal values share the same tag. For example,
Listing 3 presents a COP sequence with pointer values,
which are extracted from the IA-32 architecture, and
Listing 4 shows the sequence after the processing
of pointer abstraction. Stack and heap addresses are
normalized as well, because system call arguments
may be variable addresses on the stack or heap.

Listing 3: A COP Sequence with Pointer Values

0x00000000 0x08143c48
0x00000000 0x08145400
0x00000000 0x00000080
0x00000000 0x00000000
0x00000000 0x08145400
0x00000000 0x00000100
0x00000000 0x08143c48

Listing 4: The COP Sequence After Pointer Abstraction

0x00000000 PTR_000000
0x00000000 PTR_000001
0x00000000 0x00000080
0x00000000 0x00000000
0x00000000 PTR_000001
0x00000000 0x00000100
0x00000000 PTR_000000

• Canary Removal. Canary values are checked before
function returning. If a function ends with a branch
that one target is a normal return and the other is
unsuccessful termination, we recognize the code as
canary checking and the last COP of the function is
removed.

• Boundary Unification. VEX-IR simplifies com-
parisons into four kinds of operations: CmpEQ
(equal), CmpNE (not equal), CmpLT (less than) and
CmpLE (less or equal). While in some cases, CmpLT
and CmpLE are equivalent. For example, CmpLT(t0,
0xA:I32) and CmpLE(t0, 0x9:I32) are of the
same semantics. So we unify all CmpLE operations to
CmpLT by adding 1 to the second operand.

• Loop Compression. COP sequence of a loop is of a
simple pattern. For example, Listing 5 is a sequence of
loop, where one operand value is fixed (0x00000027)
and the other one increased with the same step. In
a signature sequence, if at least three continuous
elements match the pattern, we treat them as COPs
of a loop. We only record the first COP of the loop
followed with the number of times for looping. So in
the example, the sequence is then compressed into the
form described in Listing 6.

Listing 5: A COP Sequence of A Loop

0x00000001 0x00000027
0x00000002 0x00000027
0x00000003 0x00000027
0x00000004 0x00000027
0x00000005 0x00000027

Listing 6: The COP Sequence After Loop Compression

0x00000001 0x00000027
0x00000005 0x00000005

D. Sequence Similarity Comparison

After the above two steps, we obtain a sequence of signa-
ture for each function. Then we match functions by computing
the similarity of these sequences. With a template binary and
a target binary, we compare each executed function of the
template binary to those in the target binary, and finally gain
a list of target functions sorted by the similarity scores to the
template function. The most similar match is at rank 1.

There are numerous algorithms to compute similarity of
sequences, such as Levenshtein distance, Needleman-Wunsch
algorithm, Longest Common Subsequence (LCS), etc. We
adopt LCS, because it requires no prior knowledge and have
no limitations on the elements of sequences. In comparison,
Levenshtein distance requires the definition of costs to insert,
delete and modify elements, which are difficult to ensure
suitable values for all cases. Needleman-Wunsch algorithm is
used in bioinformatics to align protein or nucleotide sequences,
which are composed of limited elements. But values of COPs
and SCAs have no determined ranges. Besides, like Leven-
shtein distance, Needleman-Wunsch algorithm also requires to
define the scores for match, mismatch and gap.

We compute their similarity of sequences A and B by
Jaccard Index. The formula is as followed:

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B| (1)
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Listing 7: Instrumented Assembly code of IA-32 from Table I

1 ; memcpy(&mem_val, num_addr, 4)
2 ; printf("t10=%08x\n", mem_val)
3 ; printf("t31=CmpLE(t10,0x0)\n")
4 cmp [ebp+arg_0], 0 ; COP
5 ; printf("if(t31){PUT(68)=0x804848A}\n")
6 jle short loc_804848A
7 mov eax, [ebp+arg_0]
8 ; printf("t1=And(t10,0x1)\n")
9 and eax, 1

10 mov [ebp+var_C], eax
11 ; printf("t25=CmpEQ(t1,0x0)\n")
12 cmp [ebp+var_C], 0 ; COP
13 ; printf("if(t25){PUT(68)=0x804848A}\n")
14 jz short loc_804848A

Listing 8: IR trace of assembly code in Listing 7

1 t10=num_val
2 t31=CmpLE(t10,0x0) // COP
3 if(t31){PUT(68)=0x804848A}
4 t1=And(t10,0x1)
5 t25=CmpEQ(t1,0x0) // COP
6 if(t25){PUT(68)=0x804848A}

|A ∩ B| represents the length of their LCS. |A|, |B| is the
length of sequence A and B, separately.

III. IMPLEMENTATION

We implement our approach in a system named
MOCKINGBIRD. Currently, MOCKINGBIRD supports com-
parisons between 32-bit Linux ELFs from three mainstream
architectures: IA-32, ARM and MIPS.

A. Function Information Extraction

As our approach is at the function level, we leverage
IDA Pro and IDAPython [3] to obtain the entry address of each
function automatically. Then signatures are extracted according
to those function ranges.

B. Instrumentation

We adopt Valgrind to implement the process of instru-
mentation. As we aim to gain the IR trace of one execution,
the function of injected code is to output the corresponding
IR of executed assembly code. For example, for IA-32 code
in Table I, after instrumentation, the COP-related assembly
code are presented in Listing 7, and injected code is described
as comments. Then the IR trace is obtained as presented in
Listing 8, where num val in Line 1 is the concrete value stored
in address num addr in Line 1 of Listing 7.

For system calls, Valgrind provides the –trace-syscalls
option, which enables the output of all system names and
values of arguments. Listing 2 presents part of system call
log for function in Listing 1 on IA-32.

C. Signature Extraction & Signature Sequence Comparison

Our signature extraction and signature sequence compari-
son are implemented in Python. MOCKINGBIRD extract COPs
by emulating the execution with the IR trace to compute
the values of COPs. The workflow of Valgrind is that it

firstly translates binaries into IR, then instruments on IR, and
finally converts instrumented IR into binaries to execute. IR is
accessible only in the step of instrumentation, but during that
time, COPs are symbols not concrete values. While Valgrind
allows us to access values of registers and memory read/write
at runtime. For example, Line 4 in Listing 7 reads the memory
at address ebp+arg_0, so in the injected code at Line 1,
num addr is replaced with that address value by Valgrind at
runtime, and the value is read and recorded in the IR trace
as num val at Line 1 in Listing 8. Then with the IR trace,
MOCKINGBIRD computes other variable values and extract
COP. Meanwhile, MOCKINGBIRD extracts SCAs from the
system call log produced by Valgrind as described in II.

Because lengths of signature sequences may exceed
10,000, In the sequence comparison step we adopt
Hirschberg’s Algorithm [9], of which the memory complexity
is O(min(m,n)), to avoid running out memory when com-
puting the LCS.

D. Optimization

In this section, we introduce the optimization strategies
adopted in MOCKINGBIRD. When profiling programs, the I/O
operation is the performance bottleneck. Especially each binary
instruction may have several corresponding IR statements. In
some cases, the slow I/O may even fail the whole analysis
process. For instance, when transferring a file through HTTPS
with wget, the I/O operations during the SSL handshake
phase greatly slow down communications between client and
server. Then the server will discard the session because of no
response from client for a period of time. Thus, we utilize
minilzo, a lightweight subset of the LZO library for data
compression and decompression, to reduce the overhead. Each
time MOCKINGBIRD allocates 1 MB of space for buffering the
records. When the buffer is full, the contents are compressed
and written to disk.

Additionally, sequence comparison is the most expensive
process in our approach. We propose several pruning mecha-
nisms to improve the performance. For a template sequence,
each target sequence is compared to for similarity score.
MOCKINGBIRD records the maximum score of previous com-
parisons, and the value is updated if a higher score appears.
Then, before comparing two sequences A and B, their possible
maximum Jaccard Index is computed first. The formula is

Jpsb max(A,B)

=
min(|A|, |B|)

max(|A|, |B|) +min(|A|, |B|)−min(|A|, |B|)
=

min(|A|, |B|)
max(|A|, |B|)

(2)

Jaccard Index gains the maximum value if one set is a
subset of the other. In cases here, that is

|A ∩B| = |LCS(A,B)| = min(|A|, |B|)
If the such value is less than the current maximum score, the
process of comparison will be skipped.
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Another mechanism is to compute entropy of each se-
quence. Low entropy indicates the sequence poses little in-
formation. So we abandon such sequences for comparison. In
our implementation, we only filter sequences whose entropy is
0. In practice, the threshold could be defined as any meaningful
value.

IV. EVALUATION

We conduct empirical evaluation with MOCKINGBIRD:
firstly, binaries compiled from different architectures are com-
pared. Then, we compute the similarity of binaries with variant
compiling configurations. Lastly, to test the upper capacity of
MOCKINGBIRD, we compare binaries of the same code base
but provide them with different inputs.

A. Experiment Setup

We evaluate our approach on three mainstream architec-
tures: IA-32, ARM and MIPS. The experimental environment
for IA-32 is a virtual machine with 2G RAM allocated,
while for ARM and MIPS we emulate them using QEMU.
Because of the limitations of the architecture, memory of MIPS
environment is only 256M. IR traces are obtained in above
guest environments with Valgrind, then analyzed in the host
system, which is running on an Intel Core i5-2320 @ 3GHz
CPU with 8G DDR3-RAM.

Table II presents the objects of the evaluations. The pro-
grams are all from open-source projects. With different com-
pilers (gcc v4.7.3 and clang v3.0) and variant optimization
levels (-O3, -O2 and -O0), overall 80 binaries are compiled for
the three architectures. The principle to select test input is to
trigger the main or common functions of each program. Test
inputs used in the evaluations are listed in Table II as well.

B. Ground Truth

Although the approach does not rely on debug symbols, to
facilitate verifying results, we compiled all samples with the
-g option to establish ground truth based on the symbol names.
According to the symbol names, if the Rank 1 target function
shares the same name with the template function, the match
is correct. This process could be completed automatically.

Extra manual check is also needed because of function
inlining and duplication. Function inlining resulting from code
optimization removes the inlined functions from the target
binary. The callee is inlined into caller to decrease function
calling and improve efficiency. So signature of callee is in-
volved in caller as well. For example, in template binary there
exist a function A that calls function B, while in target binary
the corresponding function B’ is inlined into A’ as A’B’. Thus,
no matter the match is (A, A’B’) or (B, A’B’), we treat it as
a correct match. Function duplication copies functions in final
binaries to ensure the jump distance from caller to callee is less
than 0x1000 bytes to avoid a page fault. As the duplicated
functions are exactly identical, if a match is two duplicated
instances of the same function, it should be treated correct.

C. Effectiveness and Capacity

1) Experiments Across Architecture: In this experiment, we
aim to match all functions executed of the template binary A to

those of the target binary B. Those two binaries are generated
from the same code base, and therefore perform identical
functionalities if given the same input, but are compiled on
different architectures or with different compiling configura-
tions. For each function executed in A (template function),
we compute the similarities to functions in B (target function),
finally gaining a list of target functions sorted by the similarity
scores to the template function. The most similar match is at
Rank 1. We then assess whether it is a correct match according
to the Ground Truth.

We compile the 10 object programs for each architecture.
Compiler is the gcc of each environment, and optimization
option is -O3. Results are presented in Figure 1.

Except for the experiment of siege in ARM vs MIPS,
the accuracy of all other comparisons are over 60%, and the
average accuracy of all experiments is 77.7%. The accuracy of
ARM vs MIPS is 80.3% on average, and the average accuracy
of x86 compared to other architectures is 76.8%. Reasons
leading to more differences from x86 to other architectures
are as followed:

• Library function inlining. On x86, gcc inlines sim-
ple and common library functions, such as printf,
strlen, but compilers on AMR and MIPS don’t. It
inserts signatures of library functions to callers, which
increases the length of sequence and decreases the
similarity score. MOCKINGBIRD concentrates on user
code, such optimization is a kind of obfuscation in
some sense, which inserts junk data.

• Float point number processing. On x86, float point
numbers are processed with FPU stack, whose push
and pop operations include condition comparisons and
are indistinguishable from other COPs in VEX-IR.
While for ARM and MIPS, they both have specific
floating point registers. Thus, for binaries with float
point number processing, results of ARM vs MIPS
are much better than those comparing to x86. Typical
example is ffmpeg. Its accuracy rate of ARM vs MIPS
is 82.5%, while for x86 vs ARM, the rate is 68.5%,
and for x86 vs MIPS, the accuracy is 74.2%. In
other experiments, floating point operations are small
parts of the whole execution, their side-effects on
MOCKINGBIRD are limited.

In the three groups of experiments, siege gave the worst
results of all on average, which is 61.2%, because of the
differences of environments that include network connections,
system configurations, etc. For siege, we limited test time
of siege to 10 seconds, during which it constructed, sent
packages and waited for responses. All above processes were
instrumented by Valgrind, which gave extra overhead. On IA-
32 with 2G RAM, siege received five responses in 10s, while
for MIPS with 256M RAM, only receiving one response. Thus,
performance of siege on different architectures influenced the
results.

To our knowledge, Pewny et al. [19] propose the unique
work on detecting similar code across architectures currently.
Their approach is sensitive to CFG and segmentation of the
basic blocks, which may be influenced by function inlining
or the differences of architectures, while MOCKINGBIRD
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TABLE II: Programs used in the experiments

Program Version Description Test Input

wget 1.15
Multi protocols supported file retriever. GNU com-
mand line project.

wget http://ftp.gnu.org/gnu/wget/wget-1.13.tar.xz

gzip 1.6
Data compression utility based on the DEFLATE
algorithm. GNU command line project.

gzip sample.txt

lua 3.2.3
Command line scripting parser for lua, a lightweight
scripting language.

lua hello.lua

puttygen 0.64
Part of PUTTYGEN suit, a tool to generate and
manipulate SSH public and private key pairs.

puttygen -P sample.in -o sample.out

curl 7.39
Multi protocols supported data transferor with URL
syntax.

curl -O http://ftp.gnu.org/gnu/wget/wget-1.13.tar.xz

siege 3.0.1 Http load testing and benchmarking utility. siege -c3 -t10S www.sample_address.com
mutt 1.5.24 Text-based email client for Unix-like systems. mutt -s "hello" user@domain.com <hello_world.txt

openssl 1.0.1p
Toolkit implementing the TLS/SSL protocols and a
cryptography library.

openssl dgst -md5 file.txt

convert 6.9.2
Command line interface to the ImageMagick image
editor/converter.

convert sample.png -background black -alpha remove sample.jpg

ffmpeg 2.7.2 Audio and video recorder, converter. ffmpeg -i sample.avi -vn -ar 44100 -ac 2 -ab 192 -f mp3 sample.mp3

relies only on semantics signatures. Hence the accuracy of
MOCKINGBIRD outperforms the approach in [19]. For exam-
ple, the accuracy (Rank 1) of openssl comparison (ARM vs
MIPS) is 32.1% and 80.0% in top 100 in [19], while the rate
of Rank 1 detected by MOCKINGBIRD is 82.1%.

2) Experiments Across Compiling Configurations: Previ-
ous experiments have shown the capacity of our solution
to function matching if they are compiled for different ar-
chitectures. Next, we evaluate how the choice of compilers
and optimization levels affects the accuracy of our solution.
For different compilers, we select gcc v4.7.3 and clang
v3.0. While for comparisons of variant optimization levels, we
only discuss the -O3 case versus the -O0 case. Because high
optimization levels cover all strategies of lower ones. Take gcc
as an example, -O0 turns off all optimizations, -O1 enables 40
strategies, -O2 turns on another 34 flags, while -O3 employs 10
new optimizations on the base of -O2. Overall, -O3 enables 84
optimization strategies, and -O0 enables none. So differences
of binaries compiled with above two options are the largest.

Results of different compiler comparison on IA-32 are
shown in Figure 2. Notice that the average accuracy rate is
82.8%, better than that across different architectures (77.7%).
Take the case of siege as an example, the accuracy of compari-
son, which is 81.6%, improved remarkably compared to that in
experiments across architectures (61.2%) because of the same
environment (IA-32 2G RAM),

Comparisons of binaries compiled with different opti-
mization levels were performed on IA-32 first. The average
accuracy is 72.8%. The results also indicate that optimizations
are main reasons resulting in function inlining. After manual
checking, the ratio of inline functions of other experiments is
only 2.45%, while for -O3 vs -O0, the rate is 13.3%.

Results for comparisons of different optimization levels
across architectures are described in Figure 3. Effects of
different optimization levels are small against MOCKINGBIRD.
For comparisons between x86 and ARM, the accuracy of
x86_O3 vs ARM_O0 is only 2.90% lower on average than
x86_O3 vs ARM_O3. For x86 vs MIPS, the average difference
is 7.03%.

The main reason leading to false positive in above ex-
periments is the function inlining. Just like library function

inlining, it enlarges lengths of signature sequences so as to
introduce redundant data. After manual checking, we find
the ratio of inlined functions that the factor of architecture
introduces is 18.2%.

BLEX [6] and CoP [14] are able to detect similar binaries
compiled with different compilers and variant optimization
levels as well. BLEX mainly exploits read/write contents to
search binaries, and ranked the correct match at Rank 1
in 64% of all queries. In comparison, the average accuracy
of all experiments on IA-32 detected by MOCKINGBIRD is
82.8%. CoP is a tool based on symbolic execution. Although
it achieved an average score of 88% when comparing x86
binaries of different optimization levels (-O0 vs -O2), which
is slightly higher than MOCKINGBIRD (83.1%), it cannot
compare binaries across architectures.

3) Experiments with Different Inputs: The above experi-
ments illustrate the true positive of MOCKINGBIRD. Next,
we aim to measure the false positive produced. However,
as long as given signature sequences of template and target
binaries, MOCKINGBIRD returns lists of similarity scores. If
the two binaries hold distinct semantics, it is difficult to judge
whether the Rank 1 match is indeed correct or not. Besides,
according to our user case which is understanding semantics
of binaries by similarity detection, analysts have the prior
knowledge of the target binary, including basic functional-
ity (e.g. data compression, email client) and input format. It
is meaningless to compare binaries with distinct semantics.
So, in the following experiments, we merely compare binaries
with similar semantics, which is to further test the capacity of
MOCKINGBIRD.

We use wget to retrieve the same file through differ-
ent protocols (http and ftp), respectively. Differences of the
two executions are functions related to protocols, such as
http loop/ftp loop, gethttp/getftp, etc. Other functions includ-
ing initialization, local file writing are all the same. Results
show wget_http executed 60 functions overall after flitting,
and 11 functions were http related. The precision compared to
wget_ftp is 63.3% (38 / 60), and the recall is 77.6% (38
/ 49). For the 11 specific functions, their average similarity
score is merely 0.245, while that of 38 true positives is 0.504,
and for 11 false positives, the average score is 0.155. For those
true positives, the difference of similarity score between Rank
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(a) x86 vs ARM (b) x86 vs MIPS

(c) ARM vs MIPS

Fig. 1: Results of comparisons across architectures. The black bar represents the number of correct matching. The gray bar is
the number of functions executed. The dot is precision of each experiment.

Fig. 2: Results of experiments of binaries compiled by
different compilers (gcc vs clang) on IA-32

1 and Rank 2 is 0.211 on average. The difference of those 11
false positives is 0.014. The results indicates the confidence
for a pair of match: larger difference, more confidence.

V. DISCUSSION

This section discusses the remaining challenges and possi-
ble future work of our system.

A. Scope of Application

Since MOCKINGBIRD relies on determined runtime values
of an execution, it is difficult to handle cases with randomized
algorithms. For parallelized programs, the execution of each
thread can be monitored to extract semantic signatures and
compared for similarity scores. That is left as future work.
Currently, MOCKINGBIRD is able to compare the same library
functions of different programs, but the input for those func-
tions should be identical. In the future, we plan to analyze
binaries with symbolized input. Then signatures could be
extracted from arbitrary template and target functions.

B. Robust of Semantic Signatures

COPs and SCAs both have their own limitations. COPs
cannot handle cases short of conditional operations (e.g.,
functions only with sequential structures). Meanwhile, they
are vulnerable to control flow obfuscation, such as flattening
CFG and opaque predicate, as such techniques insert massive
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(a) x86 -O3 vs ARM -O0 (b) x86 -O3 vs MIPS -O0

Fig. 3: Results of experiments of different optimization levels across architectures

redundant comparison operations, making large differences
in the two signature sequences and result in false positives.
While [24], [7] introduce corresponding approaches of de-
obfuscation. it is better to deobfuscate target binaries first
before conducting our test since MOCKINGBIRD aims to infer
semantic information of binaries, not to employ deobfuscation.
SCAs also have troubles in tackling cases with insufficient
system calls, such as functions only with arithmetic operations.
Thus, we adopt the hybrid semantic signatures to make the
signature more robust.

C. Dynamic Analysis Issues

Dynamic analysis introduces more runtime information and
are more robust against minor code variance. However, it suf-
fers from issues of input construction and code coverage. For
our test cases, analysts have the prior knowledge of binaries
under test, including basic functionalities and input formats.
So it is not a problem to construct legal inputs. Besides,
we focus on locating functions with specific semantics, and
therefore code coverage is not the primary problem. While
in future work, techniques of concolic execution [15] and
fuzzing testing [2], [20] could be introduced for specific input
construction and higher code coverage.

D. Dynamic Instrumentation Framework

Valgrind is the most well-developed cross-architecture dy-
namic binary instrumentation framework currently. However,
comparing to that for IA-32, its support for ARM and MIPS
is insufficient. On one hand, the ARM instruction set is
incomplete. For instance, SETEND sets the endianness bit in
the CPSR on ARM. But this instruction is not supported by
Valgrind. Since the instruction is usually adopted in some
implementations of library functions (e.g. memcmp). Analysts
could supply their own libraries without such instructions to
Valgrind if they just aim to analyze user code. On the other
hand, Valgrind is unstable for MIPS in outputting logs. It
occasionally outputs incomplete IR traces. As a result, we have
to run the analysis process repeatedly for complete results.

E. Performance and Scalability

The instrumented code merely prints hard-coding IR state-
ments. The overhead is low. Emulating IR traces and trans-
mitting data dependences are both processed sequentially with
time complexity of O(n). The most expensive process of
our approach is sequence comparison, whose time complexity
is O(mn) and could not be reduced currently. To improve
performance, in future, we plan to adopt MinHash, which aims
to estimate Jaccard Indexes quickly. On that occasion, it is,
therefore, not necessary to compute the intersection (LCS) and
union of two sequences.

VI. RELATED WORK

A. Code Similarity Detection

Similar code (also known as cloned code) reflects the
existence of code copying and pasting during software devel-
opment process, minor modification or forking from the same
code base. Identifying similar or duplicated code is a common
requirement for software maintenance. Main applications of
similar code identification include software plagiarism detec-
tion and code clone detection.

Roy et al. [21] defines similarity of syntax and seman-
tics on source code. Syntax similarity is based on program
text (e.g. code layout, comments), while semantic similarity
is based on algorithm’s functionality. To tackle the problem
of syntactic similarity detection, many techniques have been
proposed over the last decade. Among them, some tools such
as DECKARD [11], CCFinder [12], and CloneDR [1] are
quite well developed for locating source code level syntactic
similarity detection. CCFinder does lexical analysis through
source code tokens. CloneDR detects similar code by com-
paring similarity of Abstract Syntax Tree (AST). DECKARD
also leverages AST, but it depends on feature vectors extracted
from AST. Bertillonage [5] introduces methods detecting clone
code in JAVA with names of classes, methods and interfaces,
etc. McMillan et al. [16] leverage JDK API calls invoked in
JAVA code to detect similar applications.

Much more complex cases exist in binary code similarity
comparison because most syntactic information has lost for
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binaries. Sæbjørnsen et al. [22] describe the first practical clone
detection algorithm for binary executables. Their work extends
an existing tree similarity framework to normalize assembly
instructions and models structural information. Hemel et al. [8]
employ data compression rate as a measure of the similarity.
In [13], Khoo et al. combine n-grams with graphlets for
structural matching. In [4], David et al. measure code similarity
with edit distances between two functions.

Above approaches are able to detect similar binary code
on syntax level, but they are generally infeasible to semantic
detection. As compiler may produce variant binaries with
different compiling options even with the same source code,
detecting similar binaries is usually the problem of semantic
similarity detection, which results in the popularity of se-
mantic features. Jhi et al. [10] proposes to use core values
as birthmark to detect software plagiarism. Zhang et al. [29]
further developed the approach and discussed the problem of
algorithm plagiarism. They point out that there exist critical
runtime values, named core values, which are irreplaceable for
all implementations of the same algorithm. However, to detect
similar binaries compiled with different optimization options,
it requires source code to extract core values. In [6], Egele et
al. propose Blanket Execution (BLEX) for full code coverage
to compare binary code. They leverage memory access and
function calling as features, which are core values in essence.
Unlike [10], [29], BLEX even have no process to refine those
features. Luo et al. [14] and Zhang et al. [30] exploit symbolic
execution to compare binary code similarity. They treat basic
blocks (BB) as black boxes and represent output of BBs as
functions of input. BBs are identical if their functions are
equivalent, and similarity of functions are measured by the
rate of clone BBs. However, there is no symbolic execution
platform that can deal with multi-architecture binaries. So
approaches based on symbolic execution are not able to detect
similar binaries across architectures. In [19], Pewny et al.
firstly proposed the approach to detect known bugs in binaries
for different architectures via code similarity comparison.
They use VEX-IR to unify representations of binaries, and
extract semantic signatures by sampling with random input.
With those signatures, similar BBs could be first detected
then combined with CFGs, and the similarity of binaries is
computed. As their approach requires information of CFG, it
is sensitive to CFG variances. Our experiments show that both
compilation’s optimization options and architectures variations
change CFGs. Thus their approach is not adaptive.

Code similarity detection is important for Android app
analysis as well (e.g., app repackaging detection). In [28],
the feature view graph of Android App is extracted as the
birthmark. Wang et al. [25] detect Android App clone by
counting number of times each variable used and defined.

B. Sequence Alignment and String Metrics

Apart from Needeman-Wunsh [17], Smith-Waterman [23]
is another algorithm to find subsequences locally in bioinfor-
matics. It compares subsequences of all possible lengths to
optimize the similarity measure. So it is suitable for cases
that large parts are missing in sequences. Sequence alignment
techniques are also widely used in similar code comparison.
For core values [10], [29], LCS is adopted to align the core
value sequences. Luo [14] treats CFG as sequences of basic

blocks, and align the basic blocks to compute the similarity of
CFG.

String metrics are used to measure the similarity between
text strings and are used heavily on fingerprint analysis, plagia-
rism detection, etc. They could be combined to any algorithm
to compare similarity of sequences. Besides Jaccard Index and
Levenshtein Distance described above, Hamming Distance and
Sørensen-Dice coefficient are popular as well. Hamming Dis-
tance requires the same length of two sequences and conducts
exclusive-or (xor) operation on them directly. Sørensen-Dice
coefficient computes the similarity of two samples as Jaccard
Index does, while it does not satisfy the triangle inequality,
and is considered as the symmetric version of Jaccard Index.

VII. CONCLUSION

Understanding binaries via reverse engineering is a tedious
task. In this work, we address the problem by automatic similar
semantics comparison. We propose a semantic signature, which
is composed of COP and SCA, to describe the binaries. The
approach is implemented in a system called MOCKINGBIRD.
Our evaluations show although representations of binaries are
quite different because of variant architectures and compiling
configurations, MOCKINGBIRD is more accurate than ap-
proaches based on similar semantics comparison. With the rise
of programs cross-compiled for different architectures (e.g.,
Android on ARM, routers of MIPS), our approach can greatly
assist understanding semantics of binaries for multiple archi-
tectures.
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