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ABSTRACT The security of binary programs is significantly threatened by software vulnerabilities.
When vulnerabilities are found, those applications are exposed to malicious attacks that exploit the known
vulnerabilities. Thus, it is necessary to patch them when vulnerabilities are reported to the public as soon as
possible. However, it still heavily relies on manual work to locate and correct the corresponding defective
code in the binary programs. In order to raise productivity and ensure software security, it becomes imperative
to automate the process. In this paper, we propose BINPATCH to automatically patch known vulnerabilities
of binary programs. It first locates the defective function, which contains the vulnerability, via similar code
comparison. Then, it reuses the corresponding code from the correct version of the defective function as
the patch code and inserts it to the defective function via binary rewriting. BINPATCH is evaluated on eight
real-world vulnerabilities, and the experimental results show that it is able to not only locate the defective
code effectively but also patch the code correctly.

INDEX TERMS Reverse engineering, binary code patching, binary program analysis, software security.

I. INTRODUCTION
Vulnerabilities constitute one of the largest threats to the
software security. Although developers and analyzers have
spent much effort to remove the vulnerabilities, many of
them, even including security-critical ones, still exist in
the released software, i.e., binary programs or executables.
In addition to the potential vulnerabilities which have not
been reported (i.e., zero-day vulnerabilities), binary pro-
grams are even threatened by malicious attacks exploiting
known ones. When a vulnerability is found and reported to
the public, vendor cannot always provide the correspond-
ing patch for their released binaries in time, let along for
legacy binary applications which lack regular maintenance.
It has been found that many vulnerabilities have the life
span over 12 months, generalized across numerous types of
software [38]. Therefore, in order to ensure the security, it is
necessary to patch the binary programs under that situation.
However, the process stills heavily relies on manual work
which is tedious and time-consuming.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ning Weng.

To automatically patch the binary programs, there exist
two challenges to be handled. The first one is defective code
localization (C1). Released binary programs commonly have
been stripped that their debug information and symbol names
are discarded. Even though the vulnerabilities are known, it is
difficult to find the corresponding defective code in stripped
binaries. The other challenge is to generate correct and com-
patible patch code which protects the defective binary code
from vulnerabilities (C2). Binary code (or machine code)
is a low-level language which needs to manage the mem-
ory, including allocating registers, arranging the stack and
heap, etc. After the compilation, the memory management
of binary code has been completed by compilers. If the
inserted patch code occupies or modifies the managed mem-
ory improperly, the resulting binary code would produce
faulty results, e.g., segmentation faults. Thus, the generated
patch code is required to not only correct the defective code,
but also avoid breaking the context of the original program.

In the literature, EC [56] is the typical solution for binary
program patching. On one hand, it locates the defective
code with the spectrum-based fault localization technique,
which requires numerous test cases to fulfill the target [66].
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Nevertheless, binary programs, especially the legacy ones,
usually lack test cases. Actually, it is still an open question
for testing techniques to trigger arbitrary code and obtain
full coverage of binaries [32]. On the other hand, EC gen-
erates candidate patch code by manipulating the defective
code with empirical rules (including instruction insertion,
removal, and swapping), then validates the candidates with
test cases. Because of the pre-defined manipulations, EC
lakes specifications of intended behaviors. It adopts test cases
as the criteria to search for the real patch code. As a result,
it would produce plausible patches [41] which pass all tests
but do not actually remove the vulnerabilities. ClearView [54]
and SafeStack [10] monitor the running binary programs
and patch the vulnerabilities online once they find erro-
neous behaviors. The two solutions are short-term, and they
both bring extra overhead to the original execution of pro-
grams. KARMA [11] focuses on patching Android kernels
which are not stripped, i.e. the debug and symbol infor-
mation is reversed. Therefore, it is less effective to handle
COTS (Commercial Off-The-Shelf) binaries which are com-
monly stripped.

In this paper, we propose BINPATCH, an automatic method-
ology patching known vulnerabilities of binary programs.
Given the defective function that contains the known vulner-
ability, BINPATCH firstly locates the corresponding function
in the target binary program via code similarity comparison.
Then, it extracts the code from the correct version of the
defective function as the patch code. BINPATCH transforms
the patch code into compatible form, and inserts it into the
target program via binary rewriting.

Since the vulnerability has been known, in order to over-
come C1, BINPATCH adopts the technique of binary code
similarity comparison which is effective in locating known
vulnerabilities [9], [17], [20], [21], [55]. The technique could
handle stripped binaries and has no need for test cases. To
solve C2, BINPATCH extracts the patch code from the correct
version of the defective function, ensuring the patch could
handle the vulnerability correctly. It does not rely on test
cases to specify the intended behaviors of the patch code.
Besides, BINPATCH performs transformation on the extracted
code to make it compatible with the target program.We adopt
eight real-world vulnerabilities to evaluate the capacity of
BINPATCH. The results show that it is able to not only locate
defective code effectively, but also patch the vulnerabilities
correctly.

In summary, the contributions of this paper are as followed:
• We propose an automatic method to patch known vul-
nerabilities of binary programs. With the code of a
known vulnerability, we locate the defective function in
the binary program via code similarity comparison, and
generate patch code by reusing corresponding code from
the correct version of the defective function.

• We propose the technology to fulfill patch code
extraction and transfer between binary programs. We
align the (emulated) execution traces of the defective
function and its correct version to extract the patch

code. After the processes of Used Register Protection,
Function Argument Replacement, and Conditional
Jump Targets Determination, the patch code is then
transformed into the compatible form for the target
defective function. The method is capable of handling
vulnerabilities which require complex operations to
patch, and avoids the overfitting caused by test case
validation.

• We implement the approach in a prototype system
named BINPATCH. We evaluate BINPATCH on eight real-
world vulnerabilities. The experimental results show
that BINPATCH is able to locate the defective code effec-
tively and patch it correctly.

II. MOTIVATION AND OVERVIEW
In this section, we use an example to illustrate the challenges
of patching vulnerabilities in binary programs and explain the
basic idea of BINPATCH.

A. MOTIVATING EXAMPLE
NConvert1 is a closed-source image processor for multiple
file formats. It adopts the open-source library libpng2 to
handle PNG (Portable Network Graphics) files. According
to the change log, before the version of 6.82, NConvert
links the static libpng which contains an buffer over-
flow (CVE-2015-8126).3 The vulnerability was reported
in Nov. 12, 2015, while NConvert was not updated until
Apr. 1, 2016 when v6.82 was released. It replaced the vul-
nerable libpng v1.6.18 with the correct version of 1.6.20.
Listing 1 shows the source and assembly code of the defective
function png_set_PLTE. It lacks the length limitation for the
PLTE chunk (num_palette at Line 10), allowing attackers
to cause a denial of service with a crafted image. Listing 2
presents the correct version of the function. Each ’+’ sign
marks a new line added by the patch, and ’-’ represents the
removed statement. The patch code defines a new variable
max_palette_length to ensure the legality of the PLTE
chunk length (Lines 9-12 and 16, Line 33-39 and 43-44).

The first challenge for the patching is defective code
localization (C1). We download NConvert v6.17 from its
home page, disassemble it with IDA Pro v6.6,4 and man-
ually locate png_set_PLTE at address 0x81AE780. We also
find its caller functions which invoke subroutines explic-
itly in NConvert, as shown in Figure 1. Each node rep-
resents a function, and every directed edge points from a
caller to its callee. Hex numbers are function start addresses
in NConvert. By manual analysis, we find corresponding
statically-linked libpng functions and attach their names in
the figure. func_80be580 and func_8139cd0 are two user-
defined functions of NConvert.

1https://www.xnview.com/en/nconvert
2http://www.libpng.org/pub/png/libpng.html
3https://www.cvedetails.com/cve/CVE-2015-8126
4https://www.hex-rays.com/products/ida/index.shtml
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Listing 1. Defective code of libpng v1.6.18.

There are no existing test cases for NConvert. If locating
png_set_PLTE in it with test cases (e.g., EC [56]), we need
to construct crafted inputs to trigger one of its callers firstly.
Nevertheless, func_8139cd0 has no explicit callers in NCon-
vert. It might be invoked via indirect calls, and unfortunately,
its callers are difficult to decide accurately with existing
methods [47]. png_read_png has no caller either. It might be
just statically-linked but never invoked. The remaining func-
tion func_80be580 is the subroutine of another 21 NConvert
functions. Then we need to further analyze NConvert in order
to find possible execution paths for the defective function,
which is still an issue of binary program analysis [32].

The second challenge is the generation of correct
and compatible patch code (C2). The addition and
removal of code presented in Listing 2 could be con-
sidered as the best practice and baseline of patching.
It leverages the branch structure to decide the value of
max_palette_length (Line 9-12, Line 33-39) which is
then compared with num_palette (Line 16, Line 43-44).
Since the above operations are completely new to the original
function, it is difficult to generate them with pre-defined
instruction manipulation rules.

B. SYSTEM OVERVIEW
For binary program patching, we propose BINPATCH to
handle the challenges. Figure 2 presents the work flow
of BINPATCH. In the first step of Defective Function
Localization (§III-A), given the defective binary pro-
gram NConvert v6.17 which contains the defective function
png_set_PLTE, BINPATCH locates the defective function via
binary code similarity comparison. With the source code of
libpng v1.6.18, we compile it and set the binary code of

Listing 2. Corrected code of libpng v1.6.20.

FIGURE 1. Call graph of png_set_PLTE in NConvert v6.17.

png_set_PLTE as the reference vulnerable function. Then,
BINPATCH is adopted to compare the reference function to
each target function of NConvert in pairs and calculate a
similarity score. After this step, BINPATCH generates a list
of candidate defective functions from NConvert, which is
ranked by the similarity scores in descending order. It con-
siders the function with the highest similarity score as the
candidate to patch.
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FIGURE 2. System architecture of BINPATCH.

Next, in the step of Patch Generation (§III-B), BINPATCH
extracts the patch code from png_set_PLTE v1.6.20, the cor-
rect version. It runs instrumented png_set_PLTE v1.6.20with
the input which triggers the vulnerability, and emulates the
candidate defective function located in NConvert with the
same input. The (emulated) execution paths of the two func-
tions are recorded simultaneously. Basing on the differences
between the two paths, BINPATCH generates the patch code. In
the last step of Binary Rewriting (§III-C), BINPATCH inserts
the patch code into NConvert and outputs the patched binary
program alongwith a log recording the rewriting information,
including insertion point address, patch code size, etc.

In summary, BINPATCH focuses on patching known vulner-
abilities in binary programs. To addressC1, it adopts the tech-
nique of binary code similarity comparison. With reference
vulnerable function, it is able to locate the defective function
in the stripped binary program. To solve C2, it reuses the
corresponding code from the correct version of the defective
function as the patch code, which guarantees to generate
patches with intended behaviors.

III. METHODOLOGY
In this section, we explain each step of BINPATCH and discuss
how it patches known vulnerabilities of binary programs in
details.

A. DEFECTIVE FUNCTION LOCALIZATION
BINPATCH is proposed to patch known vulnerabilities of
binary programs. Thus, it locates the defective function in
the target binary program by code similarity comparison.
According to bug reports or databases of vulnerabilities,
e.g., CVE (Common Vulnerabilities and Exposures),5 ana-
lyzers obtain the information of the reference functions which
contain the known vulnerabilities. Then, they use BINPATCH
to locate the similar match of the reference function in the
target defective binary program.

We base the process on CACompare [26], a semantics-
based similar binary function detector. CACompare performs
the similarity comparison via sampling. Given the reference
function with the known vulnerability (V), it provides V and
every target function T of the defective program with identi-
cal random values as the input, and emulates their execution.
The semantic signature of each function is captured during
the emulation. Then, it compares the signature of V to that
of each T in pairs, and calculates a score to measure their
similarity. After this step, BINPATCH obtains the list of T

5https://cve.mitre.org/

which is sorted basing on the similarity scores in descending
order. The Top 1 function on the list is considered as the
candidate defective function to be patched.

B. PATCH GENERATION
In this step, BINPATCH extracts the patch code (P) from the
correct function (C). It firstly captures the path conditions
of C and the candidate defective function D, denoted as
PC and PD (§III-B1). Then, it aligns PC and PD (§III-B2).
The insertion point of P in D is decided as well. Basing on
the results of alignment, P is extracted and transformed into
the compatible form for D (§III-B3).

1) PATH TRIGGERING
BINPATCH executes the instrumented C with the test case that
triggers the vulnerability. It records the path condition of the
triggered path.Meanwhile, it records the runtime input values
of C, including argument values, accessed global variable
values, heap variable values, and return values of subrou-
tines [80]. Since the vulnerability is known, it is reasonable
that the test cases covering the vulnerability are available. For
example, such test cases of png_set_PLTE could be found in
the CVE database. It is worth nothing that the test case is not
to specify or validate the patch code, but to trigger the path
which corresponds to the vulnerability.

Next, BINPATCH emulatesDwith the input values of C, and
captures the corresponding path condition. WhenD accesses
global variables or heap variables, BINPATCH assigns corre-
sponding ones of C basing on the accessing order. It is ful-
filled in the same way to assign return values of subroutines.
BINPATCH stops the emulation ifD accesses illegal addresses,
e.g., the overwritten return address caused by buffer overflow.

Figure 3 presents the extracted path conditions of
png_set_PLTE in libpng v1.6.20 and NConvert v6.17 sep-
arately. In each sub-figure, the executed code is shown
on the left. The instructions of conditional branches are
marked with dotted boxes, from which the path conditions
are inferred and shown on the right. For each entry on a
line, the first tow elements are the variable values of the
condition during the (emulated) execution. The third element
is the condition flag which indicates how the two variable
are compared (Z: zero, L: signed less than, BE: unsigned
below or equal to). The last one is the corresponding result
of the condition.

2) PATH CONDITION ALIGNMENT
In this step, BINPATCH aligns PC and PD to extract the patch
code. Since the input is error-triggering, the unique conditions
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FIGURE 3. Path condition extraction. The left is the executed path, and the corresponding path condition is on the right. The variables are
represented with the (emulated) runtime values. (a) libpng 1.6.20. (b) NConvert 6.17.

of PC but missing in PD indicate the code which removes the
vulnerabilities.

Before the alignment, BINPATCH firstly pre-processes each
path condition in order to ease the following alignment.
Algorithm 1 presents the pseudocode. BINPATCH unifies all
conditions along the triggered path into the strict inequal-
ities with equivalent semantics (Line 4-5), i.e., strictly less
than (<). For example, the original condition flag of the
last condition in Figure 3b is BE. BINPATCH then unifies
it with B that the variables are exchanged and the result
is negated as well. Additionally, for each variable in the
condition, BINPATCH captures all its possible values via value
set analysis [4], [84]. Figure 4 shows the value sets of corre-
sponding condition variables in Figure 3. arg_* represents
the arguments of the function.

Algorithm 1 The Pre-Process of Path Condition
Input: Triggered Path Condition P
Input: Control Flow Graph of the Function G
Output: Path Condition P′
Output: Compound Logic L of the Path Condition
Output: Results of Value Set Analysis R

1 Algorithm process_path_condition (P, G)
2 P′ ← P
3 R← ∅
4 foreach condition C along P′ do
5 C ← normalize_condition(C)
6 foreach variable V of C do
7 R← R + value_set_analysis(V )

8 L ← identify_compound_logic(P, G)
9 return P′, L, R

Afterwards, BINPATCH identifies the compound logic
operations in PC and PD separately (Line 8). For binary
code, the implemented order of conditions in a compound
logic might be different from that for the source code,
which depends on the compilers and compilation settings,

FIGURE 4. Value sets of condition variables. (a) libpng 1.6.20.
(b) NConvert 6.17.

e.g., optimization options. Taking png_set_PLTE as an exam-
ple, its disjunction

png_ptr == NULL || info_ptr == NULL

is implemented in the reverse order in Figure 3b,
i.e., info_ptr is checked firstly, then png_ptr. In con-
trast, it is in the normal order in Figure 3a. Thus, when
aligning conditions of compound logics, BINPATCH merely
considers the contents, but ignores the order of conditions in
the compound logic. Figure 5 depicts the simplified control

FIGURE 5. Simplified control flow graph of the disjunction in
png_set_PLTE from NConvert 6.17.
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flow graph (CFG) of that disjunction. Two conditions are
considered to belong to a compound logic, if the basic blocks
they reside in (bb_0 and bb_1) satisfy: i) bb_0 is the strict
and immediate dominator of bb_1, and ii) bb_0 and bb_1
share one same immediate successor (bb_2). It is in the same
way to decide whether two compound logics constitute a
larger one.

Next, BINPATCH aligns the value sets ofPC andPD with the
longest common subsequence algorithm (LCS). Algorithm 2
presents the pseudocode deciding whether two conditions
could be aligned, which is the core of LCS. For the condition
M ofPC andN ofPD, if they both belong to compound logics,
BINPATCH gets all the conditions of the compound logics
(M ′ and N ′). If the contents of M ′ and N ′ are equivalent,
then they could be aligned (Line 2-6). M could be aligned
to N when their condition flags are equivalent, and each
variable value set of N is the subset of the corresponding
one of M (Line 7-12). For example, Line 1-2 in Figure 4a,
which constitute a compound logic, could be aligned to
the first two lines in Figure 4b, while Line 3 is unaligned
with no corresponding elements. Additionally, because the
condition flag L is equivalent to B when the variables are
positive, Line 4 in Figure 4a could be aligned to the third line
in Figure 4b. The insertion point in D is the program point
after the path conditionwhose corresponding condition in C is
the last aligned condition before the first unaligned one. Thus,
in Figure 3b, the insertion point of NConvert is the program
point right after the second path condition.

3) PATCH CODE EXTRACTION AND TRANSFORMATION
After the process of alignment, BINPATCH extracts the patch
code from the control flow graph of the correct function,

Algorithm 2 Alignment Decision
Input: The Condition M of PC
Input: The Condition N of PD
Input: Compound Logic LC of C
Input: Compound Logic LD of D
Output: The Decision Result, True or False

1 Algorithm is_aligned (M, N)
2 if M belongs to a compound logic
3 and N belongs to a compound logic then
4 M ′ ← get_compound_logic(M , LC)
5 N ′ ← get_compound_logic(N , LD)
6 return is_aligned_compound(M ′, N ′)

7 if not M belongs to a compound logic
8 and not N belongs to a compound logic then
9 if M.cond_flag is equivalent to N .cond_flag
10 and N.left_value_set ⊆ M.left_value_set
11 and N.right_value_set ⊆ M.right_value_set then
12 return True

13 return False

which is dominated by the basic block of the first unaligned
path condition and post-dominated by that of the next
aligned condition. BINPATCH performs backward program
slicing [82], [83] on each variable of the patch code in order to
obtain complete functionality. Figure 6 displays the process.
Figure 6a gives the first unaligned and next aligned path
condition of correct png_set_PLTE (v1.6.20) in dotted boxes,
i.e., the third and fourth condition in Figure 6a. The instruc-
tions of the corresponding program slices are in the bold
format, which are extracted as the patch code (Figure 6b).

Then, BINPATCH transforms the patch code into compatible
form for the candidate defective function D, including the

FIGURE 6. Patch extraction and transformation.
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following processes: i) protecting used registers, ii) replacing
function arguments, and iii) determining conditional jump
targets.
Used Register Protection: Because of variant compilation

settings, strategies that allocate registers are different. The
patch code would occupy the registers of D and break the
local context. Thus, BINPATCH saves the original register
values onto the stack, and restores them before the exit of the
patch code. As shown in Figure 6c, the instruction pushad,
which pushes the contents of general-purpose registers onto
the stack, is added at Line 1. popad, the reverse operation of
pushad, is also added at Line 14 to restore the registers.
Function Argument Replacement: BINPATCH replaces the

function arguments accessed in the patch code with cor-
responding ones of D, because arguments on the stack
might be accessed with different stack pointer regis-
ters (i.e., esp or ebp), which is decided by compilers. ebp
would be used as a general-purpose register, as shown at
Line 1 in Figure 6b, while that is rare for esp. BINPATCH
then adopts esp to access arguments for the patch code.
According to the calling convention, BINPATCH recognizes
the arguments and obtains their offsets relative to esp. For
example, the assembly function png_set_PLTE of NConvert
in Figure 3b is compiled basing on cdecl, the default call-
ing convention used by C compilers for the IA-32 architec-
ture [22]. The arguments are prepared by the caller. Thus,
for a callee, the arguments are placed on the high addresses
relative to esp on the stack. At the very beginning, the com-
piler saves the value of ebp (4 bytes), then allocates a buffer
of size 0x38 for local variables (sub esp, 38h), overall
0x3C bytes (= 4 + 0x38). As a result, it is necessary to
add esp with the offset of 0x3C in order to access the
memory field of arguments on the stack. The right operands
at Line 2 and Line 4 in Figure 6c present the arguments after
transformation.
Conditional Jump Targets Determination: Direct jump

targets are implemented with hard-coding addresses in
binary code, as shown at Line 6 and Line 13 in Figure 6b.
BINPATCH needs to replace those address of the patch code
with corresponding ones in D. For jumps within the patch
code (e.g., Line 6 in Figure 6b), their targets are decided by
where the patch code is inserted in D in the step of Binary
Rewriting (§III-C). Thus, they are represented with place-
holders temporally (loc_tag_0 at Line 7 in Figure 6c).
For jumps between the patch code and the original
code (e.g., Line 13 in Figure 6b), BINPATCH assigns
their target values according to the results of path con-
dition alignment (§III-B2). Because the condition at
Line 12-13 in Figure 6b could be aligned to the last
one in Figure 3b, the condition flag (L→GE) and tar-
get address (loc_81AE7E0) are assigned accordingly,
as shown at Line 15 in Figure 6c.

C. BINARY REWRITING
BINPATCH inserts the patch code by adding a new .text
section to the program, as shown in Figure 7. The left

FIGURE 7. Binary program structure after rewriting.

.text is the original one containing the candidate defective
function (D), and the patch code is in the new .text on
the right. At the insertion point, BINPATCH overwrites the
original code with a jump instruction to the patch which
generally consists of three parts ( 1©). The first part is the
compatible patch code (patch_code). The placeholders in
the patch code are calculated by adding their offsets to the
address where the patch is placed in D (patch). The sec-
ond part is the normal code of D overwritten by the jump
instruction (overwritten_code). The last part is the
jump instruction back to D ( 2©). After this step, BINPATCH
generates the patched binary program. Besides, a log record-
ing the information of the rewriting is generated as well,
including insertion point address, overwritten code size, patch
code size, etc.

IV. IMPLEMENTATION
BINPATCH supports binary code patching for ELF
(Executable and Linkable Format) files on IA-32. Next,
we introduce the solutions adopted in the implementation of
BINPATCH.

A. BINARY INFORMATION EXTRACTION
BINPATCH requires argument offsets and function infor-
mation (e.g., function addresses) to locate defective func-
tions (§III-A). Processes of patch code generation (§III-B)
and binary rewriting (§III-C) are also performed on assem-
bly code. We leverage IDA Pro,6 an industrial strength
reverse engineering tool, to disassemble binary code. We
develop scripts with its plugin IDAPython which provides
API to disassemble binary code and extract the information
automatically.

B. INSTRUMENTATION AND EMULATION
We adopt Valgrind [51] to implement the instrumentation
of BINPATCH. We develop our own instrumentation plugin
with API provided by Valgrind to record the path conditions
and runtime information of the correct function (§III-B1).
Valgrind adopts VEX-IR, a RISC-like intermediate repre-
sentation, to unify the complex instruction set of IA-32. That
feature facilitates the path triggering of BINPATCH.

6https://www.hex-rays.com/products/ida/index.shtml
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TABLE 1. Objects of the evaluation.

We implement the process of emulation with angr [62],
a static binary analysis framework. It also bases on VEX-IR,
and provides interfaces to simulate the execution of IR code.
Furthermore, it has built in the module of value set analysis
required in the step of path condition alignment (§III-B2).

V. EVALUATION
We evaluate BINPATCH with eight real-world Linux pro-
grams. Each one statically links a library which contains a
known vulnerability in a defective function. The information
of all the vulnerabilities is obtained from the CVE database.

A. EXPERIMENT SETUP
Table 1 lists the objects of the experiments. The first
column (Client Program) presents the object program.
The second column (Library) shows the library which
is statically-linked in the client program. The third col-
umn (CVE ID) gives the CVE ID of each vulnerability. The
fourth and fifth column list the defective and correct version
of the library. The last column (Defective Function) gives
the defective function and the line where the vulnerability
occurs in the source code file. We disassemble binary code
and identify functions with IDA Pro v6.6 (§IV-A). Besides,
we instrument and capture runtime information of correct
functions with Valgrind v3.12.0, and emulate the exe-
cution of the defective functions with angr (§IV-B). The
experiments are conducted in Ubuntu 16.04 which runs on
an Intel Core i5-2320 @ 3GHz CPU with 8G DDR3-RAM.
Ground Truth: BINPATCH performs patching on stripped

binary programs whose debug and symbol information is
discarded. To evaluate the effectiveness and capacity of
BINPATCH, we compile copies of the object programs and
libraries with the -g option to establish the ground truth
with the debug information and symbol names. As the source
code of NConvert is unavailable, we manually analyze
the program via reverse engineering and find corresponding
functions of libpng as references.

B. SUMMARY OF EXPERIMENTS
In the experiments, programs are compiled with their default
configurations except for NConvertwhich is closed-source
and downloaded from its homepage. Table 2 presents the

TABLE 2. Summary of BINPATCH patching results.

summary of the experiments. The columns of Time show the
time for patching in each step, and the last column (Condition
Number) gives the number of path conditions for patch
code generation. For all client programs, BINPATCH finishes
the patching within 30 seconds. By manually verification,
BINPATCH successfully locate the defective functions of all
the client programs. It generates the correct patch code
which protects each program from the vulnerability. Besides,
the generated patch code certainly has no other side effects
on original programs.

C. CASE STUDIES
We have taken NConvert as an example to illustrate how
BINPATCH works in the section of Methodology (§III). Next,
we discuss several other specific cases in details.

1) OpenSSL (CVE-2014-0160)
Heartbleed is a buffer over-read bug in libssl
1.0.1 through 1.0.1f. The Heartbeat Extension tests TLS
secure communication links by allowing client to send a
Heartbeat Request message, which consists of a payload
and the payload’s length. The server then must send back
the same payload to the client. OpenSSL uses the function
tls1_process_heartbeat to implement the process, as shown
in Listing 3. When the server copies the message at Line 23,
if it does not check the length to ensure whether the payload
length (payload) is not greater than the actual length of
the payload (pl), an attacker could send a small payload but
with a large length so as to obtain sensitive data in the active
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Listing 3. Correct tls1_process_heartbeat.

memory of the server, which is contained in the responding
message. The correct version of the function adds a sanity
check to avoid Heartbleed, as shown at Line 8-9.

BINPATCH correctly locates the defective function
tls1_process_heartbeat in OpenSSL v1.0.1e. When trig-
gering the path condition, tls1_process_heartbeat v1.0.1g
is executed with an erroneous input, and it returns
directly because payload is overlarge. When emulating
tls1_process_heartbeat v1.0.1e, the emulation stops at the
point of memory copy (Line 23) because the process requires
more contents (payload) than the payload (pl) actually
has, and there is no enough legal data to provide for the
emulation. Afterwards, BINPATCH generates the patch code
which exits the function if the input fails the check, then
inserts it into the defective function finally.

2) gif2tiff (CVE-2013-4231)
gif2tiff is a utility which converts GIF (Graphics
Interchange Format) images to TIF (Tagged Image File
Format) with the help of the library libtiff. When pro-
cessing GIF images, it needs to iterates over the LZW
(Lempel-Ziv-Welch) code size which should be less than
13. The process is implemented with function readraster.
However, libtiff v4.0.3 lacks the check that constrains the
code size to be less than 13, as presented in Listing 4. The
prefix and suffix arrays are defined with a constant
length 4096 (212) at Lines 2-3. If the datasize is over
12, then the two arrays would be forced to overwrite a
set of statically allocated buffers at Lines 9-10. libtiff v4.0.6
provides the patch condition before the indexing:

if (datasize > 12) return 0;

BINPATCH locates the defective readraster in gif2tiff v4.0.3
successfully. When performing the backward slicing on the
path condition extracted from libtiff v4.0.6, it finds that

Listing 4. Defective readraster.

Listing 5. Source code of defective curl_easy_escape.

datasize is the return value of glibc function getc,
which is stored in eax:

; call _IO_getc
cmp eax, 0Ch
jg loc_804A48D; the function epilogue

The jump target (0x804A48D) is the epilogue of the func-
tion which cleans the frame of the function stack and
returns. BINPATCH then inserts the patch code to the defective
readraster before the comparison of the loop and after the
calling of getc, which is right before Line 8 in Listing 4 on
the source code level.

3) CURL (CVE-2016-7167)
Curl is a tool for getting and sending files using URL
syntax. Curl v7.50.2 suffers from an integer overflow in
function curl_easy_escape which is presented in Listing 5.
If argument inlength is provided with a negative value
-1 (0xFFFFFFFF in 2’s complement), alloc is assigned
with 0xFFFFFFFF which is not 0 (Line 3). Without check-
ing the allocation size, the function is forced to allocate an
overlarge buffer at Line 6. In the version of 7.50.3, the vul-
nerability is eliminated by adding the code:

if (inlength < 0) return NULL;

After successfully locating the defective function curl_easy
_escape in Curl, BINPATCH extracts the patch code from
Curl v7.50.3, and replaces the argument inlength with
that of the defective function:

cmp [esp+48h], 0
jl loc_805B4DA ; the function epilogue

0x48 is the offset of inlength on the stack of the
defective function. BINPATCH then inserts the patch code
before Line 3 in Listing 5 from the perspective of source
code.
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D. THREATS TO VALIDITY
For automatic source code repair (or fixing, patching), there
have been sophisticated benchmarks to evaluate the perfor-
mance of a newly proposed method, such as ManyBugs [36]
for C/C++, Defects4J [31] for Java, etc. However, there is
no such benchmarks for binary code patching. Due to the
inherent complexity of binary code analysis, we are only
able to study eight real-world vulnerabilities in details for
the evaluation, showing BINPATCH is effective in locating
and patching them, which cannot cover all cases. The threat
could be reduced by employing more real-world instances of
vulnerabilities in the future.

VI. DISCUSSION
A. THE SCOPE OF BINPATCH
BINPATCH aims to assist analysts or maintainers in locating
and patching known vulnerabilities in binary programs. The
analysts have the knowledge of the program functionality and
whether the program might contain the vulnerability. Since
the vulnerability has been known, the error-triggering test
case is available as well.

BINPATCH is not designed to patch all kinds of vulnerabili-
ties, but those handled by adding new conditions ormodifying
the original ones (e.g., buffer overflows). It generates patch
code basing on the differential path condition between the
correct and defective function. It becomes ineffective if the
control flows of the two functions are the same that their
path conditions are identical. Additionally, on the binary
level, members of a data structure are accessed with off-
sets of constant values. Thus, BINPATCH performs patch-
ing under the condition that the data structures of the two
functions should be the same. Namely, the same member
of a data structure should be accessed with identical offset.
Otherwise, the patch code would access wrong member
variables in the defective function, and produce wrong
behaviors.

Obfuscation and code refactoring are out of the scope
of this paper. On one hand, techniques and solutions for
deobfuscation have been well studied currently, such as
bit-level taint analysis [77], VMHunt [74]. If the object
binary code is found to be obfuscated, it is better to deob-
fuscate it firstly, then perform further analysis. On the other
hand, BINPATCH needs to locate the defective function for
the following patching. It cannot handle the cases if the
function is removed or combined into others because of
refactoring.

In the section of Methodology (§III), we present how
BINPATCH patches the vulnerability by inserting code at one
place of a function. Each time, it captures one patch condition
once it finds the first unaligned element of the two path
conditions. If a patch modifies multiple places of a function,
after inserting the patch code at the first place, BINPATCH then
re-emulates the defective function, and generates patch code
for the next place.

B. FUNCTION INLINING
BINPATCH cannot handle inlined functions. On one hand, it
relies on CACompare, the binary code similarity comparison
technique, to locate the defective function. The accuracy
of CACompare thus affects the performance of BINPATCH.
CACompare cannot locate the inlined functions, which is
still an issue for the topic [9], [17], [27], [55]. As a result,
BINPATCH is unable to patch the binary functions which
are inlined into their callers. On the other hand, BINPATCH
generates patch code basing on the (emulated) execution of
the defective function and its corrected version. It requires
the same input of the two functions. If the defective function
is inlined, it is difficult to decide the input of its caller,
which should ensure the corresponding input of the defective
function to be the same as that of the correct function.

C. BINARY REWRITING
BINPATCH patches code by adding new .text sections
which are connected with original code through long
jumps ( 1© and 2© in Figure 7). There are also other methods to
rewrite binaries. For instance, inserting code to gaps between
functions. But the size of a gap is usually not enough for a
patch. Another way is reassembling which injects patch to
the original code and relocates it [68], [70]. Since the long
jumps added by BINPATCH might violate security require-
ments (e.g., Control Flow Integrity [1]), reassembling is the
future choice for BINPATCH.

D. PATCH RESTORATION
When analyzers or maintainers find that BINPATCH patches
a wrong function, BINPATCH restores the modified func-
tion with the patching log generated after Binary Rewriting
(§III-C). Then, if BINPATCH is directly provided with the
target defective function, it would attempt to patch that func-
tion. Otherwise, it would process the next function on the
candidate defective function list generated after Defective
Function Localization (§III-A).

VII. RELATED WORK
A. AUTOMATIC PROGRAM REPAIR
Automatic program repair (or fixing, patching) is motivated
by the high costs of repairing defective programs. Numerous
solutions have been proposed for source code repair [16],
[23], [30], [33], [34], [37], [40], [42], [45], [46], [52], [63],
[64], [72], [73], [76]. As the source code is available, they
have type information and symbol names for program syn-
thesis. Besides, they assume they have plenty of test cases to
detect defective code and generate the patch. We would not
discuss that type of work in more details because this paper
focuses on binary code patching where the source code is
unavailable and test cases are inadequate. Next, we mainly
discuss the solutions for binary code patching.

Table 3 summaries the attributes of different solutions for
binary code patching. EC [56]–[58] adopts the technique of
SBFL (Spectrum-based Fault Localization) to identify the
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TABLE 3. Comparison among different solutions of binary code patching.

faulty binary instructions, which still requires numerous test
cases to fulfill the target. It also needs test cases to specify
the intended behaviors in order to search for the correct patch
code (search-based patch generation). ClearView [54] and
SafeStack [10] focus on overflow vulnerabilities, including
buffer overflows, integer overflows, and heap overflows.
They monitor running programs and patch them if they detect
erroneous behaviors (Execution Verification), e.g., buffer
overflowing. ClearView generates patch code by firstly learn-
ing runtime invariants from normal execution of the object
binary program (Learning-based). It then alters the control
flow when the invariants are violated. SafeStack fulfills patch
generation basing on First-Aid [23] which leverages pre-
defined code templates to correct overflow bugs (Model-
based). KARMA [11] patches the known vulnerabilities in
Android kernels. Commonly, the binary code of Android
kernels has the symbol information, i.e., non-stripped. Thus,
with bug reports, the corresponding defective code could be
located easily basing on symbol names (String Matching).
Additionally, because of the nature of Linux (Android)
kernels that the kernels are stable across multiple releases
and well maintained, KARMA refers to the correct version
of kernels, e.g., from upstream source, to extract patch
code (Example-based).

Source code program repair is aimed at the processes
of software development and testing, while binary program
patching is software maintenance for released binary code
which is usually stripped. There would be enough test cases
for source code program repair for locating faulty code and
verifying the correctness of candidate patch code, which is
not realistic for binary code. BINPATCH aims to patch the
known vulnerabilities in stripped binaries which lack test
cases. It locates the defective function via static binary code
similarity comparison. It merely adopts a few error-triggering
test cases, which are accessible in vulnerability databases,
to extract patch code from the correct code (Example-based),
but does not depend on them to specify the intended correct
behaviors. Thus, comparing to EC which needs a number of
test cases and KARMA which is merely designed for non-
stripped binaries, BINPATCH is more effective in patching

real-world binary programs. Besides, ClearView captures
invariants for patch generation from normal executions, and
SafeStack generates patch code with pre-defined templates. It
is difficult for them to cover all behaviors of the correct patch
code. In contrast, BINPATCH extracts the corresponding code
from the correct version of the object binary program as the
patch which is the best practice to remove the vulnerabilities.

B. BINARY CODE SIMILARITY COMPARISON
The technique of binary code similarity comparison (or clone
detection) has been well studied, and has numerous applica-
tions in software engineering and security.

Jhi et al. [29] and Zhang et al. [78] leverage invariants dur-
ing the execution of binary code to detect software and
algorithm plagiarism. Ming et al. [48] infer malware lineage
via code clone comparison. However, above methods only
analyze executed binary code and cannot cover all functions
of the target program. Egele et al. [18] propose blanket exe-
cution to detect similar binary code. They break the nor-
mal execution of binary code to pursue high code coverage,
while the detection accuracy decreases. Luo et al. [44] and
Zhang et al. [79] adopt symbolic execution to software pla-
giarism. They rely on the performance of SAT/SMT solvers
which cannot handle all cases. David et al. [12]–[15] break
every basic block of a binary function into program slices.
Each slice corresponds to an output of a basic block. The sim-
ilarity of two functions is measured by counting the identical
slices they have.

Multi-MH [55], discovRE [20], and Genius [21] are pro-
posed to detect known bugs in binaries via code similarity
analysis. However, discovRE and Genius base on control
flow graphs which could be changed significantly because of
different compilation configurations (e.g., variant compilers).
Therefore, they are ineffective in comparing code compiled
with different configurations in this paper. More recently,
BinGo [9], CACompare [27], and IMF-sim [71] are proposed
to detect similar binary code as well. Besides, BinShape [61]
and BinSequence [28] are proposed to measure the similarity
of binary function accurately and efficiently. For a reference
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function, they adopt filters to remove irrelevant target func-
tions basing on syntax features. Then, BinShape adopts
B++ tree to index feature vectors of functions for similarity
comparison, while BinSequence explores function paths to
infer the similarity of the reference function and each target
function in pairs, which is similar to CoP [44]. BinArm [60]
aims to detect vulnerabilities in firmware images. Similar to
BinShape and BinSequence, it is also a multi-stage solution
which adopts the filtering process to ensure the efficiency,
then compares the similarity of functions via fuzzy matching
of their control flow graphs. FOSSIL [2] is proposed to
identify free open-source software functions in malwares.
It adopts opcodes, paths of control flow graphs and opcode
frequency distribution as code features. Then it applies z-
score to the features and leverages the Bayesian network to
calculate the similarity score of two functions.

Machine learning techniques are also applied to the
topic. Xu et al. [75] train the neural network with the fea-
ture vectors extracted from control flow graphs of binary
functions. Liu et al. [39] directly leverage machine code to
compute best parameters for their neural network model.
Ding et al. [17] treat a binary function as a document, and
handle the problemwith NLP (Natural Language Processing)
techniques.

BINPATCH is proposed to patch known vulnerabilities in
binary programs. It is worth nothing that the process of fault
localization is not to detect new bugs, but to locate the known
bugs in object binaries. Thus, in this paper, CACompare,
an existing similar binary code detector, is adopted to fulfill
the process, which is substitutable if there exists a better
solution catering to the scenarios and requirements.

C. BINARY REWRITING
Binary rewriting is the process that transforms one binary into
another, adding new metrics, such as security, while main-
tains the original functionality [65]. The rewriting could be
realized either statically or dynamically. The static solutions
perform offline modifications to the binaries, introducing
lower overhead, while the dynamic solutions instrument the
binary code at runtime, which guarantee a full-coverage
transformation of COTS (Commercial Off-The-Shelf) or
stripped binaries [68].

1) STATIC BINARY REWRITING
Early static solutions focus on object files which contain
debug and symbol information. With the information, it is
easy to differentiate code from data and decide the targets of
indirect calls/jumps. SASI [19] adds extra code to the object
file for the security basing on the information provided by the
compiler. In the similar way, Plot [59] and Diablo [67] fulfill
code optimization and profiling via rewriting. BIRD [49]
and PSI [81] are typical solutions which perform rewriting
on COTS via detouring. They insert jump-out code, adding
new text sections, to add new code. SecondWrite [53] is the
first solution that implements binary rewriting with IR (Inter-
mediate Representation). It lifts binary code into LLVM-IR,

then translates the IR back to machine code after adding
the new code. Zipr [24] and Zipr++ [25] are designed in
the similar way to enforce the security of the original code.
Dyninst [6] disassembles the binary function and extracts
its control flow graph, then inserts new basic blocks into
the graph. Uroboros [69], [70] leverages the technique of
reassembling which re-computes the addresses and offsets
after inserting new code. It avoids the huge overhead intro-
duced by detours (i.e. long jumps) or full IR translation.
Ramblr [68] further eliminate several assumptions of previ-
ous work, making reassembling more robust for real-world
cases.Multiverse [5] abandons the heuristics adopted by other
solutions. It constructs mappings to find the corresponding
new addresses of the original code and data. In addition to the
above solutions working on the Intel architecture, Kim et al.
propose RevARM [35] to rewrite binary code of ARM. They
instrument the internal representations transformed from the
original binaries, then generate the new binary code.

2) DYNAMIC BINARY REWRITING
Dynamic binary instrumentation (DBI) is the typical appli-
cation of dynamic binary rewriting. With the runtime
information, it is easier to obtain the targets of indirect
calls and differentiate pointers from constants according
to their usage (e.g., memory accessing, logic arithmetic).
Currently, dynamic rewriting tools DynamoRIO [7], [8],
Valgrind [50], [51] and Pin [43] are widely used for
DBI. The predecessor of DynamoRIO, Dynamo [3], is a
dynamic optimization system for code execution. Basing on
Dynamo, DynamoRIO further provide various lightweight
APIs (Application Programming Interfaces) which could
monitor the execution of any binary instruction. Valgrind is
a heavyweight solution for binary instrumentation. In addi-
tion to the APIs, it also introduces profiling tools, such as
Memcheck, to analyze the runtime memory of the object
program. Pin implements a virtual machine which takes the
original code and instrumentation code as input, then handles
the new code with a JIT (just-in-time) compiler and emulates
the execution.

The focus of binary rewriting is how to insert new code
to the original binaries, while that of binary patching is how
to locate the defective code and generate patch code (the
new code) to correct it. Binary patching needs the technology
of binary rewriting to insert the patch code. In this paper,
BINPATCH implements the rewriting with detouring which
could be substituted with reassembling in the future (§VI-C).

VIII. CONCLUSION
In this paper, we present BINPATCH to automatically patch
known vulnerabilities of binary programs. It locates defective
code via similar code comparison, and generates patch code
by reusing corresponding code from the correct version of
the defective code. BINPATCH is evaluated with eight real-
world vulnerabilities. The experimental results indicate that
it is able to not only locate the defective functions in binary
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programs, but also generate the correct patch code so as to
remove the vulnerabilities.
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