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Abstract—Binary code similarity comparison is a methodology for identifying similar or identical code fragments in binary programs. It

is indispensable in fields of software engineering and security, which has many important applications (e.g., plagiarism detection, bug

detection). With the widespread of smart and Internet of Things (IoT) devices, an increasing number of programs are ported to multiple

architectures (e.g., ARM, MIPS). It becomes necessary to detect similar binary code across architectures as well. The main challenge

of this topic lies in the semantics-equivalent code transformation resulting from different compilation settings, code obfuscation, and

varied instruction set architectures. Another challenge is the trade-off between comparison accuracy and coverage. Unfortunately,

existing methods still heavily rely on semantics-less code features which are susceptible to the code transformation. Additionally, they

perform the comparison merely either in a static or in a dynamic manner, which cannot achieve high accuracy and coverage

simultaneously. In this paper, we propose a semantics-based hybrid method to compare binary function similarity. We execute the

reference function with test cases, then emulate the execution of every target function with the runtime information migrated from the

reference function. Semantic signatures are extracted during the execution as well as the emulation. Lastly, similarity scores are

calculated from the signatures to measure the likeness of functions. We have implemented the method in a prototype system

designated as BINMATCH which performs binary code similarity comparison across architectures of x86, ARM and MIPS on the Linux

platform. We evaluate BINMATCH with nine real-word projects compiled with different compilation settings, on variant architectures, and

with commonly-used obfuscation methods, totally performing over 100 million pairs of function comparison. The experimental results

show that BINMATCH is resilient to the semantics-equivalent code transformation. Besides, it not only covers all target functions for

similarity comparison, but also improves the accuracy comparing to the state-of-the-art solutions.

Index Terms—Binary code similarity comparison, reverse engineering, program analysis, code clone
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1 INTRODUCTION

BINARY code similarity comparison is a fundamental
methodology which identifies similar or identical code

fragments in target binary programs with the reference
code. It has numerous important applications in software
engineering as well as security, for example, plagiarism
detection [2], [3], [4], code searching [5], [6], [7], program
comprehension [8], malware lineage inference [9], [10], [11],
patch code analysis [12], [13], known vulnerability detec-
tion [14], [15], [16], [17], etc. In addition, with the develop-
ment of smart and Internet of Things (IoT) devices, binary
code similarity comparison is also required to be performed
across multiple architectures considering above applica-
tions. Therefore, to improve the productivity and ensure the
security of the software, it is necessary to effectively com-
pare binary code similarity across architectures.

To fulfill the target, there exist two challenges. The
first one is the semantics-equivalent code transformation (C1).
It results from different compilation settings [18] (i.e., dif-
ferent compilers or optimization options), code obfusca-
tion [11], [19], and varied instruction set architectures

(ISAs) [15]. Because of the code transformation, even
though two pieces of binary code are compiled from the
same code base (i.e., semantically equivalent), they would
differ significantly on the syntax and structure level, such
as variant instruction sequences and control flow graphs,
etc. The other challenge lies in the trade-off between com-
parison accuracy and coverage (C2) [20]. Dynamic meth-
ods procure rich semantics from code execution to
guarantee the high accuracy of comparison, yet they ana-
lyze merely the executed code, leading to low code cover-
age. In contrast, static methods are able to cover all
program components, while they heavily rely on syntax
or structure-based code features which lacks semantics
and thus produce less accurate results.

In the literature, it has drawn much attention to com-
pare the similarity of binary code. However, existing solu-
tions adopt either static methods which depend on
semantics-less code features or dynamic methods which
merely care about executed code. They cannot reach the
compromise between comparison accuracy, which corre-
sponds to C1, and coverage. Typically, static methods dis-
covRE [16], Genius [17], and Kam1n0 [21] extract code
features from control flow graphs, and measure the binary
function similarity basing on graph isomorphism. Multi-
MH [15], BinGo [7], and IMF-sim [20] capture behaviors of
a binary function by sampling it with random values.
Since the random input lacks semantics and is commonly
illegal for the function, it could hardly trigger the core
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semantics of that function. Besides, Asm2Vec [22] lever-
ages machine learning techniques to extract code features
from the lexical relationships of assembly code tokens,
while it is still syntax-based and suffers from C1. For
dynamic methods, although Ming et al. [11], Jhi et al. [2],
and Zhang et al. [3] adopt semantics-based code features,
i.e., system calls and invariant values during execution,
they perform detection merely on executed code.
BLEX [18] pursues high code coverage at the cost of break-
ing normal execution of binary functions, distorting the
semantics inferred from the collected features. Thus, it is
necessary to propose a method which only depends on
semantics and takes advantages of both static and
dynamic techniques so as to achieve high accuracy and
coverage for binary code similarity comparison.

In this paper, we propose BINMATCH, a semantics-based
hybrid method, to fulfill the target. Given the reference
function, BINMATCH aims to identify its match of similar
semantics in the target binary program. BINMATCH first
instruments the reference function, and executes it with
available test cases to record its runtime information. It
then migrates the runtime information to each function of
the target program, and emulates the execution of that
function. During the execution of the reference function
and the emulation of the target functions, the semantic sig-
nature of each function is extracted simultaneously.
Finally, BINMATCH compares the signature of the reference
function with that of each target function in pairs to mea-
sure their similarity. Semantics describes the processes a
computer follows when executing a program, which could
be shown by describing the relationship between the input
and output of a program [23]. To overcome C1 of seman-
tics-equivalent code transformation, BINMATCH only relies
on signatures generated from the input/output and inter-
mediate processing data collected during the (emulated)
execution of the whole reference or target function. To
address C2 of the trade-off between comparison accuracy
and coverage, BINMATCH adopts the hybrid method which
captures signatures either in a static or in a dynamic man-
ner. By executing the reference function and emulating the
target functions, BINMATCH is able to extract their seman-
tics-based signatures from the (emulated) executions.
Because of the emulation, it is not necessary to really run
the target program. BINMATCH emulates the target func-
tions with the runtime information migrated from the ref-
erence function. Thus, it could cover all functions of the
target program.

We have implemented a prototype of BINMATCH using
the above method. We evaluate it with nine real-world proj-
ects compiled with various compilation settings, obfusca-
tion configurations, and ISAs on the 32-bit Linux platform,
totally performing over 100 million pairs of function com-
parisons. The experimental results indicated that BINMATCH

not only is robust to semantics-equivalent code transforma-
tion, but also outperforms the state-of-the-art solutions of
binary code similarity comparison.

The paper makes the following contributions.

� We propose BINMATCH, a semantics-based hybrid
method, to compare binary code similarity. It cap-
tures the semantic signature of a binary function

either in a dynamic (execution) or in a static (emula-
tion) manner. Thus, it could not only detect similar
functions accurately with signatures of rich sem-
antics, but also cover all target functions under
analysis.

� BINMATCH emulates the execution of a function by
migrating existing runtime information. To smooth
the process of migration, we propose novel strategies
to handle global variable reading, indirect jumping/
calling, and library function invocation.

� We implement BINMATCH in a prototype system
which supports cross-architecture binary code simi-
larity comparison on the 32-bit Linux platform. BIN-

MATCH is evaluated with nine real-world projects
which are compiled with different compilation set-
tings, obfuscation configurations, and instruction set
architectures. The experimental results show that
BINMATCH is robust to the semantics-equivalent code
transformation. Besides, it covers all candidate target
functions for similarity comparison, and outper-
forms the state-of-the-art solutions.

As this work is an extended version of our conference
paper [1], we list below, the contributions of this extension:

1) Effectiveness. We adopt Intel C++ Compiler (ICC) to
compile the object projects, and leverage BINMATCH

to compare the similarity of the resulting binary
functions to those compiled by GCC and Clang as
well as the obfuscated ones. Besides, we conduct
experiments to evaluate the capacity of BINMATCH in
comparing similar binary function across the main-
stream architectures, i.e., x86, ARM and MIPS. In
addition to Kam1n0 [21] and BinDiff [24], we com-
pare the results of BINMATCH to those of Asm2Vec
[22] and CACompare [25] as well. The experimental
results further show the effectiveness of BINMATCH in
handling semantics-equivalent code transformation
which exists in the binary code.

2) Practicability. Despite effective, BINMATCH is ineffi-
cient. To make the method more practical, we pro-
pose a strategy to prune the process of signature
comparison. Additionally, we adopt a hash-based
technology to efficiently estimate the similarity of
function signatures.

3) Investigation into thresholds. To reach the compromise
between comparison accuracy and efficiency, we
investigate the thresholds for applying the pruning
strategy and the hash-based technology, and find
suitable values for BINMATCH. The results indicate
that it thus fulfills the comparison efficiently. Besides,
it also outperforms the existing solutions from the
perspective of accuracy.

The rest of this paper is organized as follows. Section 2
introduces a motivating example and presents the system
overview of BINMATCH. Section 3 introduces how BINMATCH

extracts semantics signatures of binary functions and com-
pares their similarity. Section 4 presents several aspects to
implement BINMATCH. The experimental results are shown
and analyzed in Section 5. Some related issues are discussed
in Section 6. Section 7 discusses the related work and the
conclusion follows in Section 8.
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2 MOTIVATION AND OVERVIEW

In this section, we first present a typical application of binary
code similarity comparison, and illustrate the challenges of
the topic with an example. Then, we explain the basic idea of
BINMATCH and show the overview of its system.

2.1 The Motivating Example

Known vulnerability detection is a typical application of
binary code similarity comparison [7], [14], [15], [16], [17].
Given a piece of code which contains a known vulnerability,
it is possible to locate its similar (or identical) match in other
programs so as to check whether they are vulnerable or not.

NConvert
1 is a closed-source image processor which

supports multiple image formats. It handles files of the Por-
table Network Graphics (PNG) format with the statically-
linked open-source library libpng.2 Unfortunately, libpng
is found to suffer from an integer overflow vulnerability in
the function png_set_unknown_chunks before the version of
1.5.14 (CVE-2013-73533). The vulnerability allows attackers
to cause a denial of service via a crafted image. To ensure
whether NConvert suffers from the vulnerability, analyzers
first need to locate the potential vulnerable function in it.

Since the source code of libpng is available, it is reason-
able to locate the target function via code similarity compar-
ison. NConvert is closed-source that only its executable is
accessible, and the compilation setting of the executable is
unknown. Even though executables are compiled from the
same code base, different compilation settings would lead
to semantics-equivalent code transformation, generating syntax
and structure-variant binary code of equal semantics (C1).
Fig. 1 presents the Control Flow Graphs (CFGs) of png_se-
t_unknown_chunks. Functions in Figs. 1a and 1b are com-
piled from the source code of libpng v1.5.12 with the
setting of gcc -O0 and clang -O2 separately, while Fig. 1c is
extracted from the executable of NConvert v6.17 via

manual reverse engineering. Because of the code transfor-
mation, despite the same semantics, the three functions dif-
fer in instruction sequences and CFGs. Thus, methods
relying on syntax or structure code features (e.g., CFG iso-
morphism, binary code hashing) become ineffective.

Another problem is the trade-off between comparison accu-
racy and coverage (C2). Existing dynamic analysis-based
methods only handle the executed code. However, png_se-
t_unknown_chunks is statically-linked, mixing with the user-
defined functions in the executable of NConvert. It requires
huge extra work for dynamic methods to generate test cases
in order to cover the target function, which is still an issue of
binary code dynamic analysis [26]. In contrast, static analysis-
based methods could cover all functions of NConvert. Nev-
ertheless, they depend on semantics-less code features
because they perform without actually executing the code.
Therefore, the static methods cannot handle the semantics-
equivalent code transformation.

2.2 System Overview of BINMATCH

We propose BINMATCH to compare the similarity of binary
functions. Given a reference function, BINMATCH finds its
match of similar semantics in the target binary program,
returning a list of functions (the target functions) of the tar-
get program, which is ranked basing on the similarity of
semantics.

Fig. 2 presents the work flow of BINMATCH. Provided
the reference function has been well analyzed or under-
stood (png_set_unknown_chunks), BINMATCH dynamically
instruments and executes it with available test cases, captur-
ing its semantic signature (Section 3.1). Meanwhile, runtime
information is recorded during the execution (Section 3.2).
Then, BINMATCH emulates every function of the target
program (NConvert) with the runtime information. During
the emulation, signature of each target function is extracted as
well. Afterward, BINMATCH compares the signature of the ref-
erence function to that of each target function in pairs, and
computes their similarity score (Section 3.4). Finally, BIN-

MATCH generates a list of target functions ranked by the simi-
larity scores in descending order.

In Summary, to overcome C1, BINMATCH completely
depends on the semantics-based signature which is gener-
ated from the input/output and the intermediate processing
data during the (emulated) execution of a function. To
address C2, BINMATCH captures function signatures in a
hybridmanner. It extracts the signature of the reference func-
tion via dynamically executing its test cases. We assume that
the reference function has beenwell studied and its test cases
are available. In above example, the integer overflow of
png_set_unknown_chunks has been known, and its test case
could be found in the libpng project or the vulnerability
database. Then, with the runtime information of the refer-
ence function, BINMATCH extracts the signature of each func-
tion of the target program (NConvert) via static emulation.
Therefore, BINMATCH is able to cover all target functions and
detect similar functionwith signatures of rich semantics.

3 METHODOLOGY

In this section, we first introduce the semantic signatures
adopted by BINMATCH. Then, we discuss how it captures the
signatures of binary functions and measures their similarity.

Fig. 1. Control flow graphs of png_set_unknown_chunks.

1. https://www.xnview.com/en/nconvert/
2. http://www.libpng.org/pub/png/libpng.html
3. https://www.cvedetails.com/cve/CVE-2013-7353/
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3.1 Semantic Signature

The semantics describes the processes a computer follows
when executing a program. It could be shown by describing
the relationship between the input and output of the pro-
gram [23]. Thus, given a specific input, we focus on two
points to reveal the semantics of a binary function: i) what is
the corresponding output after the function processing the
input, and ii) how the function processes the input to gener-
ate the output. The signature adopted by BINMATCH consists
of the following features:

� Output Values. For a binary function, the feature con-
sists of the return value and the global variable val-
ues written to the memory. It covers the output of a
function. When given the specific input, the feature
directly shows the semantics of a function.

� Comparison Operand Values. The feature is composed
of values for comparison operations whose results
decide the following control flow of an (emulated)
execution. A function might have numerous paths,
while only one is triggered by the input to generate
the output. The feature describes how an input choo-
ses the path of a function to produce the correspond-
ing output, indicating the relationship between the
input and output. Therefor, it reflects the semantics
of a function.

� Invoked Standard Library functions. Standard library
functions provide fundamental operations for imple-
menting user-defined functions. They have complete
functionality, such as malloc meaning dynamic
memory allocation, fread representing file reading,
etc. Then the invocations of those library functions
indicate the semantics of the (emulated) execution.
Besides, the feature has been show to be effective for
binary code similarity comparison [27], [28]. Thus, it
is adopted as complement to the semantic signature
of BINMATCH.

During the (emulated) execution of a binary function,
BINMATCH captures the sequence of above features, and con-
siders it as the signature of that function for latter similarity
comparison.

3.2 Instrumentation and Execution

In this step, BINMATCH dynamically instruments the refer-
ence function R to extract its signature by executing the
available test cases. Meanwhile, runtime information for
Emulation (Section 3.3) is recorded as well.

Algorithm 1 presents the pseudo-code of instrumenta-
tion. For the instruction I of R, if it outputs data, per-
forms comparison operations, or calls a standard library
function, BINMATCH injects code before it to capture
corresponding features, then generates the signature of
R (Line 4-9).

Algorithm 1. Instrumentation

Input: Instruction under Analysis I
Output: Instruction after Instrumentation I r

1 Algorithm Instrumentation (I )
2 I r  I
3 // capture features for the signature

4 if I outputs data then
5 I r  record_data_val (I r)
6 if I performs comparison then
7 I r  record_oprd_val (I r)
8 if I calls a standard library function then
9 I r  record_libc_name (I r)
10 // record runtime information

11 if I reads an argument of the function then
12 I r  record_arg_val (I r)
13 else if I uses global variable then
14 I  record_var_val (I r)
15 else if I calls a function indirectly then
16 I r  record_func_addr (I r)
17 else if a subroutine returns then
18 I r  record_ret_val (I r)
19 return I r

Line 11-18 present the code for recording runtime infor-
mation of R’s execution. Similar functions should behave
similarly if they are executed with the same input [7], [15],
[18], [25]. Therefore, BINMATCH records the input of R’s exe-
cution, which is provided for the Emulation in the next
step. For a binary function, the input consists of the argu-
ment values, global values, and return values of its subrou-
tines [13]. According to cdecl, the default calling convention
of x86, function arguments are prepared by callers and
passed through the stack, as shown in Fig. 3. In contrast, 32-
bit ARM and MIPS have specific argument registers (i.e.,
R0-R3 for ARM, $a0-$a3 for MIPS). When the function has
arguments more than the registers, the surplus ones are
passed by the stack, which is similar to cdecl. Thus, if I
reads a variable from argument registers or stack with the
address higher than the stack pointer (ESP in Fig. 3) before
calling, BINMATCH considers the variable as a function argu-
ment and records its value (Line 11-12).

Fig. 2. System architecture of BINMATCH.

Fig. 3. Calling stack of cdecl.
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For Executable and Linkable Format (ELF) files, global data
is placed in specific data sections, e.g., .bss for uninitial-
ized global data. Therefore, if I uses data within those
sections, BINMATCH considers the values as global data and
records them along with the accessing addresses (Line 13-
14). After this step, a record sequence of accessed global
variables is generated. If a variable is accessed for multiple
times, there would be the same number of records in
the sequence as well. Besides, BINMATCH records the target
addresses of subroutines indirectly invoked by R (Line 15-
16). The return values of all subroutines are recorded
as well, including user-defined functions and library
functions (Line 17-18).

Algorithm 2. Emulation

Input: Emulated Memory Space of the Target FunctionM
Input: Runtime Value Set of the Reference Function S

1 Algorithm Emulation (M, S)
2 init_func_stack (M)
3 assign_func_arg (M, S)
4 for each instruction I to be emulated do
5 if I uses a global variable then
6 if the variable is accessed for the first time then
7 migrate_var_val (M, S)
8 if I calls a function indirectly then
9 addr get_tar_addr (I)
10 if addr 2 S then
11 migrate_ret_val (M, addr, S)
12 else if addr is an illegal function address then
13 exit_emulation()
14 if I invokes a standard library function then
15 libf  get_func_name (I)
16 if libf needs system supports then
17 migrate_ret_val (M, libf , S)
18 record_feat_val (M, I)
18 continue
20 // capture features for the signature

21 if I contains features then
22 record_feat_val (M, I)
23 emulate_inst (M, I, S)

3.3 Emulation

For every target function T to be compared with the refer-
ence function R, BINMATCH emulates its execution with run-
time information recorded in the last step. The semantic
signature of T is captured simultaneously. The basic idea of
the process is to emulate Twith the same input (i.e., runtime
information) of R as if it was executed in the memory space
of R. If T is the match of R, then their generated signatures
should be similar.

To fulfill the emulation, BINMATCH first needs to prepare
the stack frame for T which is similar to dynamic
execution (Section 3.3.1). Then, it provides T with the input
ofR to perform the emulation. From a function’s perspective,
the input consists of arguments, global variables, and return
values of subroutines [13]. Therefore, we need to handle
function argument assignment (Section 3.3.2) and global var-
iable reading (Section 3.3.3). Since the targets of direct user-
defined function calls are explicit, we then just focus on indi-
rect calls (Section 3.3.5) and standard library function calls

which might require the system support (Section 3.3.6). It is
also necessary to consider indirect jumps whose target
addresses are implicit for emulation (Section 3.3.4).

Algorithm 2 presents the pseudo-code of the process. BIN-

MATCH first prepares the stack frame for the function emula-
tion, including initializing the stack pointer values (Line 2)
and providing T with the arguments of R (Line 3). Before
emulating the instructions of Twith the runtime intermediate
data of R (Line 23), BINMATCH needs to handle global variable
reading (Line 5-7), indirect function calling (Line 8-13), and
standard library function invocation (Line 14-19) if necessary.
If T is not the match of R, the emulation might access
illegal memory addresses which have never been recorded
in the last step. BINMATCH then stops the emulation. Addi-
tionally, BINMATCH records the features of T to generate its
signature (Line 21-22). Next, we discuss the algorithm of
emulation inmore details.

3.3.1 Stack Frame Pointer Initialization

Similar to execution, every T for emulation has its own stack
frame which is accessed by the stack pointer or the base
pointer (e.g., ESP or EBP) with relative offsets. Before emu-
lating, BINMATCH assigns the stack and base pointers with
those initial values of the reference function. After assigning
the argument values (Section 3.3.2), the arrangement of the
stack frame is decided by the code of T, such as pushing or
popping values, allocating memory for local variables, etc.

3.3.2 Function Argument Assignment

In our scenario, functions for similarity comparison are
compiled from the same code base, i.e., they have identical
interface with the same number and order of arguments.
According the calling convention, BINMATCH recognizes the
argument list of T. If the argument number of T equals to
that of R, BINMATCH assigns the argument values of R to
those of T in order. Otherwise, T cannot be the match of R,
then BINMATCH skips the emulation. For example, R and T
have the following argument lists:

R ðrarg 0; rarg 1; rarg 2Þ
T ðtarg 0; targ 1; targ 2Þ

Provided BINMATCH has the values of rarg_0 and
rarg_2 (R only accesses the two arguments in the execu-
tion), it assigns their values to targ_0 and targ_2 sepa-
rately. To make the emulation smooth, arguments without
corresponding values (targ_1) are assigned with a prede-
fined value (e.g., 0xDEADBEEF).

3.3.3 Global Variable Reading

In the execution of the reference function R, it might read
global (or static) variables whose values have been modified
by former executed code. For example, R accesses a global
variable gvarwhose initial value is 0. During the execution,
before R is invoked, its caller modifies gvar with the
value 1. Then R processes with gvar of value 1. To ensure
the target function T is emulated with the same input as R,
the modified global values should be assigned to the corre-
sponding addresses which T reads from.

HU ET AL.: A SEMANTICS-BASED HYBRID APPROACH ON BINARY CODE SIMILARITY COMPARISON 1245



Global variables are stored in specific data sections of an
executable file (e.g., .data section). The size of each vari-
able is decided by the source code. The location of the vari-
able is determined during the process of compilation and
not changed afterward. Therefore, if the addresses of T’s
global variable accessing are input-unrelated, their explicit
values could inferred during the emulation. Recall that BIN-

MATCH has generated a record sequence of accessed global
variables during the execution of R (Section 3.2). Then, it
migrates the unassigned values in the record sequence to
the inferred addresses according to the usage order. If the
address originates from the input, which is actually the one
processed by R (e.g., pointer assigned as an argument of T),
BINMATCH then directly reuses the first unassigned value of
that address in the record sequence for the emulation. In
addition, if the address is illegal for both R and T, BINMATCH

stops and exits the emulation.
Fig. 4 shows an example of two functions for global vari-

able value migration which bases on the usage order. Dur-
ing the execution of R, two global variables gvar1 and
gvar2 are read at Line 1 and Line 3 separately in Fig. 4a.
gvar1 is used to test its value at Line 2, and gvar2 is used
for the addition operation at Line 4. So the usage order of
the two variable is [gvar1, gvar2]. When emulating T in
Fig. 4b, BINMATCH identifies ecx and ebp are loaded with
global variables gvar1’ and gvar2’ at Line 1 and Line 2.
Then, it finds ebp is used for testing at Line 3, and ecx is
used for the addition at Line 4 afterward. The usage order
of the global variables in Fig. 4b is [gvar2’, gvar1’].
Therefore, BINMATCH assigns the value of gvar1 to gvar2’,
and gvar2 to gvar1’ accordingly. If there are no enough
global values to assign (e.g., T reads two global variables
but R reads only one), BINMATCH stops and exits the
emulation.

3.3.4 Indirect Jumping

An indirect jump (or branch) is implemented with a jump
table which contains an ordered list of target addresses. For
x86 and MIPS, jump tables are stored in .rodata, the read-
only data section of an executable. Therefore, similar to
reading a global data structure, a jump table entry is
accessed by adding the offset to the base address of the
jump table. The base address is a constant value, and the
offset is computed from the input. Fig. 5 shows an indirect
jump of a switch structure on x86. At Line 2, the index value
is computed with edx, a value of an input-related local vari-
able, and stored in eax. If the index value is not above
0x2A, which represents the default case, an indirect jump is

performed according to the jump table whose base address
is 0x808F630 (Line 5).

On ARM, jump tables are inlined into the code. They
directly follow the code which accesses the tables. Fig. 6
presents the indirect jump and jump table of a switch
structure on ARM. It loads the index from the first func-
tion argument (arg_0), storing it in R1 (Line 1). The
index is compared with 0x8 (Line 2). If it is larger than
0x8, the program directly jumps to the default
case (Line 4). Otherwise, the program refers to the jump
table and gets the corresponding target address (Line 3).
Since the jump table is attached to the jumping code,
PC (or R15, the Program Counter) is used as the base
address. Note that the code in Fig. 6 is compiled with the
A32 instruction set of ARM, which has the fixed instruc-
tion length of 32 bits (4 bytes). Because of the processor’s
pipeline, the PC value is always 8-byte ahead the current
executed instruction. When executing the loading instruc-
tion at Line 3, the PC in the right operand is pointing to
the first entry of the jump table at Line 6. Therefore, on
ARM, indirect jumps also access jump tables with the
decided value as the base address.

During the compilation, entries of jump tables are sorted
and placed in the resulting binary code. With the same
input, code of identical semantics would jump to the same
path to process the input. Thus, BINMATCH just follows
the emulated control flow and has no need to do extra work
for indirect jumps.

3.3.5 Indirect Calling

Similar to indirect jumping, targets of indirect calls are
decided by the input at runtime as well. In some cases, tar-
get addresses directly come from the input, as shown in
Fig. 7. At Line 1, the first function argument (arg_0),
which is the pointer of a data structure, is loaded to eax.
After the first member is fetched, which is a function
address, the code calls the function indirectly. Since the
target function T is emulated with the memory space of
the reference function R, if T is the match of R, targets of
the indirect calls in above cases should be those invoked
during the execution of R. BINMATCH then migrates the
return values of those calls to the corresponding ones of
T (Line 10-11 in Algorithm 2).

In some cases, varied execution paths would generate dif-
ferent target addresses for a function call. That is decided by
the input. Fig. 8 presents an example of the case. At Line 1, the
input-related value stored in eax is tested. If it is not zero, the
branch is taken at Line 2 (jnz: jump if not zero), jumping to

Fig. 4. Global variable value migration.

Fig. 5. Indirect jump of a switch on x86.

Fig. 6. Indirect jump of a switch on ARM.

Fig. 7. Indirect call decided by the input on x86.
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0x806E0D4. Then a function address 0x80815FC is stored
into data section at 0x808C810 (Line 6). Otherwise, another
function address 0x808157B is stored (Line 3). Afterward,
the program jumps to the stored address indirectly (Line 10).
Thus, thewhole processmerely depends on the input. It is not
necessary to do other work for indirect calls in such case. In
other cases, indirect calls are implemented with jump tables
as well, such as virtual function tables. BINMATCH handles
such indirect calls the sameway as that for indirect jumps.

When the address is not a legal function address of either
R or T, T cannot be the match of R. BINMATCH just stops the
process and exits (Line 12-13 in Algorithm 2).

3.3.6 Standard Library Function Invocation

If the target function T calls a standard library function
which requests the system support (e.g., malloc), BIN-

MATCH skips its emulation and assigns it with the result of
the corresponding one invoked by the reference function
R (Line 16-19 in Algorithm 2). For example, R and T calls
following library functions in order:

R : malloc 0; memcpy; malloc 1

T : malloc 00; memset; malloc 10

BINMATCH assigns return values of malloc_0, mal-

loc_1 to malloc_0’, malloc_1’ separately, and skips
the emulation. In contrast, memset is emulated normally,
because it has no need for the system support. Afterward,
when T accesses the memory values on the heap, i.e., via
the return values of malloc_0’ or malloc_1’, it would
be assigned with those of R for the emulation.

Algorithm 3. Function Similarity Comparison

Input: Signature of the Reference Function Sr
Input: Signature of the Target Functions St
Input: Length Threshold L
Output: Similarity Score S

1 Algorithm Comparison (Sr, St, L)
2 Lr  length(Sr)
3 if Lr < L then F  jaccard_with_lcs

4 else F  hd_with_simhash

5 S  F ðSr;StÞ
6 return S

3.4 Similarity Comparison

BINMATCH has captured the semantic signature (the feature
sequence) of the reference function via execution, and those of
target functions via emulation. In this step, it compares the
signature of the reference function to that of each target func-
tion in pairs, and calculates their similarity score, as shown in

Algorithm 3. BINMATCH adopts two solutions to measure
the signature similarity. One is the Jaccard Index [29] with
Longest Common Subsequence (LCS) [30], the other is
Hamming Distance (HD) [31] with SimHash [32]. The former
solution is relatively more accurate but slow, while the latter
one is fast but less accurate. Thus, a length threshold (L) is
specified to select the suitable method. When the lengths of
the reference signatures are short, i.e., less than L, BINMATCH

performs the comparisonwith the accurate matching (Line 3).
Otherwise, it leverages the fuzzy matching to fulfill the
target (Line 4). In such way, we aim to reach a compromise
between comparison accuracy and efficiency.Wewill discuss
the value ofL in Section 5.2.1.

After the comparison, BINMATCH generates a list of target
functions along with similarity scores, which is ranked by the
scores in descending order. Next, we discuss the details of the
solutions adopted by BINMATCH for similarity comparison.

3.4.1 Jaccard Index with Longest Common

Subsequence

Jaccard Index is a statistic used for measuring the similarity
of sets. Given two sets Sr and St, the Jaccard Index is calcu-
lated as followed:

JðSr; StÞ ¼ jSr \ Stj
jSr [ Stj ¼

jSr \ Stj
jSrj þ jStj � jSr \ Stj : (1)

JðSr; StÞ ranges from 0 to 1, which is closer to 1 when Sr

and St are considered to be more similar.
To better adapt to the scenario of BINMATCH, we utilize

the Longest Common Subsequence (LCS) algorithm to the
Jaccard Index. On one hand, a signature is captured from
the (emulated) execution of a function. The appearance
order of each entry in the signature is a latent feature as
well. The order reflects how the input is processed to gener-
ate the output, thus it is semantics-related. On the other
hand, the signature might be captured from an optimized
or obfuscated binary function that it would contain diverse
or noisy entries in the sequence. LCS not only considers the
element order of two sequences for comparison, but also
allows skipping non-matching elements, which tolerates
semantics-equivalent code transformation. Hence, the LCS
algorithm is suitable for signature similarity comparison of
BINMATCH. With LCS, in Equation (1), Sr and St represent
the signatures of the reference and target functions. jSrj and
jStj are their lengths, and jSr \ Stj is the LCS length of the
two signatures.

3.4.2 Hamming Distance with SimHash

SimHash is a solution which quickly estimates the similarity
of two sets. The basic idea of SimHash is similar items are
hashed to similar hash values, i.e., with small bitwise ham-
ming distances. Assuming that the hash values have the
size of F, the similarity of two sets Sr and St is computed as
followed:

SimðSr; StÞ ¼ 1�HD½SHF ðSrÞ; SHF ðStÞ�
F

: (2)

Here, SHF ðSÞ means the SimHash value of set S, ranging
from 0 to 2F . Then, the hamming distance (HD) of the two

Fig. 8. Indirect call affected by the control flow on x86.
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SimHash values ranges from 0 to F . As a result, SimðSr; StÞ
ranges from 0 to 1 as well. The larger the value is, the more
similar the two sets are considered to be.

In such way, comparing to the high time complexity
Oðn2Þ of the LCS algorithm, SimHash only has the time
complexity of OðnÞ. However, SimHash treats the feature
sequences (signatures) as sets. It ignores the order of seque-
nce elements, which is considered to be semantics-related.
Thus, it is less accurate in handling signatures extracted
from optimized or obfuscated functions. Consequently,
hamming distance with SimHash computes the similarity of
signatures more efficiently, while Jaccard Index with LCS
has higher accuracy.

4 IMPLEMENTATION

Currently, BINMATCH supports binary function similarity
comparison of Executable and Linkable Format (ELF) files.
It performs analysis on 32-bit Linux platform of three main-
stream ISAs, i.e., x86, ARM, and MIPS. Next, we discuss the
key aspects of the implementation.

4.1 Binary Function Boundary Identification

BINMATCH performs comparison on the function level. It
requires the address and length information of each binary
function under analysis. Given an ELF file, IDA Pro v6.64

is adopted to disassemble it and identify the boundaries of
its binary functions. The plugin of IDA Pro, IDAPython,
provides interfaces to obtain addresses of functions. For
example, Functions(start, end) returns a list of func-
tion start addresses between address start and end. As a
result, we develop a script with IDAPython to acquire func-
tion addresses of binary programs automatically. Besides,
function arguments and switch structures are identified as
well to assist in assigning argument values (Section 3.3.2)
and emulating indirect jumps (Section 3.3.4). Although the
resulting disassembly of IDA Pro is not perfect [33], [34], it
is sufficient for the scenarios of BINMATCH.

4.2 Instrumentation and Emulation

We implement the instrumentation module of BINMATCH

with Valgrind [35], a dynamic instrumentation frame-
work. Valgrind unifies binary code under analysis into
VEX-IR, a RISC-like intermediate representation (IR), and
injects instrumentation code into the IR code. Then, it trans-
lates the instrumented IR code into binaries for execution.
IR translation unifies the operations of binary code and
facilitates the process of signature extraction. For example,
memory reading and writing instructions are all unified
with Load and Store, the opcodes defined by VEX-IR.
Hence, we just concentrate on the specific operations of IR
and ignore the complex instruction sets of different
architectures.

The step of emulation is implemented basing on angr

[36], a static binary analysis framework. angr borrows
VEX-IR from Valgrind, and translates binary code to be
analyzed into IR statically. Given a user-defined initial
state, it provides a module named SimProcedure to emu-
late the execution of IR code. SimProcedure allows

injecting extra code to monitor the emulation of the IR
code. It actually emulates the process of instrumentation.
Besides, angr maintains a database of standard library
functions to ease the emulation of those functions
(Section 3.3.6). Thus, we develop a script of monitoring
code, which is similar to the instrumentation code devel-
oped with Valgrind, to capture semantic signatures dur-
ing the emulation with angr.

4.3 Function Inlining and Signature Inlining

Function inlining is an operation which expands a callee to
its caller. It eliminates the calling and returning of the callee,
improving the efficiency of code execution. Then, it is
adopted as a strategy for code optimization [37]. Function
inlining also might be used as an obfuscation technique that
modifies boundaries of functions [38], posing difficulties to
reverse engineering.

Since BINMATCH works on the function level, function
inlining would affect its accuracy of comparison. For
example, the reference function Mr invokes the subroutine
Nr during the execution. The corresponding function Nt is
inlined into Mt in the target binary program, becoming
MtNt. Because the signature of MtNt is actually extracted
from two functions, while that of Mr only contains one,
BINMATCH might miss the match of ½Mr;MtNt� finally. To
alleviate the side effects of function inlining, BINMATCH

inlines the signature of a callee to its caller, which is simi-
lar to the process of function inlining. In above example,
the signature of Nr is then expanded in that of Mr, becom-
ing the signature of MrNr for the similarity comparison.
Note that BINMATCH only inlines the signatures of user-
defined functions, not counting those of standard library
functions.

Algorithm 4. Pruning Similarity Comparison

Input: Signature of the Reference Function Sr
Input: Signature of the Target Functions St
Input: Length Threshold L
Input: Pruning Threshold P
Output: Similarity Score S

1 Algorithm pruningComparison (Sr, St, L, P)
2 Lr  length(Sr)
3 Lt  length(St)
4 // pruning strategy

5 if max(Lr, Lt) / min(Lr, Lt) > P thenS  �1
6 // Algorithm 3

7 else S  comparison(Sr, St, L)
8 return S

4.4 Pruning Strategy of Similarity Comparison

The code features adopted by BINMATCH are semantics-
related. Intuitively, because of signature inline, signature
lengths of similar functions should be close. Thus, we pro-
pose a signature length-based pruning strategy to improve
the efficiency of similarity comparison. As presented at Line
5 in Algorithm 4, given a pre-defined pruning threshold
P (>1), BINMATCH skips the comparison when the difference
between two signature lengths is sufficiently large, i.e., the
division of their lengths is lager than P or less than 1

P.4. https://www.hex-rays.com/products/ida/
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The two functions are considered to be dissimilar under that
condition. We will discuss the value of P in Section 5.2.2.

5 EVALUATION

Weconduct empirical experiments to evaluate the effectiveness
and capacity of BINMATCH. We first discuss thresholds (L in
Section 3.4 and P in Section 4.4) adopted by BINMATCH, which
balance the accuracy and efficiency of comparison (Section 5.2).
Then, BINMATCH is evaluated with binaries compiled with dif-
ferent compilation settings, including variant optimization
options and compilers (Section 5.3). We also evaluate the effec-
tiveness of BINMATCH in handling obfuscation by comparing
binary functions with their obfuscated versions (Section 5.4).
Lastly, we leverage BINMATCH to compare the similarity of
binary code compiled with different ISAs, across x86, ARM
andMIPS (Section 5.5). The results of above experiments are all
compared to those of existing solutions.

5.1 Experiment Setup

The evaluation is performed in the system of Ubuntu 16.04
which is running on an Intel Core i7 @ 2.8 GHz CPU with
16G DDR3-RAM.

5.1.1 Dataset

Weadopt programs of nine real-world projects as objects of the
evaluation, as listed in Table 1. The object programs have vari-
ous functionalities, including data transformation (convert,
ffmpeg), data compression (gzip), code parsing (lua), email
posting (mutt), etc. With those objects, the effectiveness of
BINMATCH is shown to be not limited by the types of programs
and functions under analysis.

For cross-compilation-setting comparison (Section 5.3),
the objects are compiled with different compilers (i.e., GCC
v4.9.3, Clang v4.0.0, and ICC v16.0.4) and variant optimiza-
tions (i.e., -O3 and -O0). For comparison with obfuscated
code (Section 5.4), we adopt Obfuscator-LLVM (OLLVM) [39]
to obfuscate the object programs. OLLVM provides three
widely used techniques for obfuscation, including Instruc-
tion Substitution, Bogus Control Flow, and Control Flow Flat-
tening. We use the three techniques to handle the object

programs optimized with -O3 and -O0 respectively. Then,
for cross-architecture comparison (Section 5.5), the object
programs are compiled for three architectures, i.e., x86,
ARM, and MIPS, separately, with the compiler GCC and
optimization option -O3. As a result, we totally compile 142
unique executables for the evaluation.

For each experiment, we select two executables of an object
program, i.e., Er (the reference executable) and Et (the target
executable). BINMATCH executes Er with the test command
presented in Table 1, and considers each executed function as
a reference function. Then, it compares every reference func-
tion to all target functions of Et in pairs to compute similarity
scores. Consequently, BINMATCH performs over 100 million
pairs of function comparisons in all the experiments.

5.1.2 Ground Truth

All the executables for the evaluation are stripped that their
debug and symbol information is discarded. To verify the
correctness of the experimental results, we compile their
extra unstripped copies, and establish the ground truth with
the symbol information.

For each reference function, BINMATCH generates a list of
target functions ranked by the similarity scores in descend-
ing order (Section 3.4). According to the ground truth, if the
reference function name exists in the Top K entries of
the resulting target function list, we consider the match of
the reference function could be found by BINMATCH in Et.
Given the reference function, BINMATCH is designed for
assisting analyzers in looking for similar matches in target
binaries. Thus, it is reasonable to assume the analyzers
could further identify the correct match with acceptable
amount of effort when provided with K candidates. In this
paper, we assign Kwith values of 1, 5, and 10 respectively.

5.1.3 Evaluation Metrics

Similar to previous research [8], [18], we measure the per-
formance of BINMATCH with Accuracy, the ratio of executed
reference functions which could be found in the Top K
entries of the resulting target function lists. The formula is
as followed:

TABLE 1
Object Projects of Evaluation

Program Version Description Test Command

convert 6.9.2 Command-line interface to the ImageMagick
image editor/converter

convert sample.png -background black -alpha
remove sample.jpg

curl 7.39 Command-line tool for transferring data using
various protocols

curl -O http://ftp.gnu.org/gnu/wget/wget-1.13.
tar.xz

ffmpeg 2.7.2 Program for transcoding multimedia files ffmpeg -f image2 -i sample.png sample.gif
gzip 1.6 Program for file compression and

decompression with the DEFLATE algorithm
gzip –best –recursive –force sample_directory

lua 5.2.3 Scripting parser for Lua, a lightweight, multi-
paradigm programming language

lua sample.lua

mutt 1.5.24 Text-based email client for Unix-like systems mutt -s “hello” user@domain.com < sample.txt
openssl 1.0.1p Toolkit implementing the TLS/SSL protocols

and a cryptography library
openssl s_server -key key.pem -cert cert.pem
-accept 44330 -www

puttygen 0.70 Part of PUTTYGEN suit, a tool to generate and
manipulate SSH public and private key pairs

puttygen -P sample.pem -o key.pem

wget 1.15 Program retrieving content from web servers
via multiple protocols

wget http://ftp.gnu.org/gnu/wget/wget-1.13.tar.
xz –no-cookies
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Accuracy ¼ jFound Matchesj
jReference Functionsj : (3)

5.2 Parameter Settings

We leverage either Jaccard Index with LCS (accurate but less
efficient) orHamming Distance with SimHash (efficient but less
accurate) to measure the similarity of function signatures. We
propose the signature length threshold L to select suitable
method for the measurement (Section 3.4). Besides, we intro-
duce the ratio threshold P to prune unnecessary comparison
to improve the efficiency of similarity measurement (Section
4.4). In this section, we attempt to find the best values of L
and P for the following experiments, which balance the accu-
racy and efficiency of BINMATCH.

5.2.1 Length Threshold for Similarity Comparison

We execute the reference executables, totally obtaining
14,207 reference functions. We randomly select 4,000 of
them, and investigate the performance of BINMATCH with
variant values of the length threshold L. The pruning
strategy is disabled in this part of the experiments, i.e.,
P ¼ þ1.

The results are shown in Fig. 9. The black line represents
the Top 1 accuracy, and the gray line is the average time for
processing each reference function. As L increases exponen-
tially, the corresponding time rises in a similar manner,
while the accuracy grows much slower in a linear-like form.
When BINMATCH performs the similarity comparison only
with the Jaccard Index, i.e., L ¼ þ1, it achieves the Top 1
accuracy of 85.4 percent. That could be considered as the
upper bound capacity of BINMATCH. Nevertheless, the time
consumption of each function reaches 262.637 seconds. Con-
sidering the average time, note that ð512; 14:031Þ is the turn-
ing point of the line. When L ¼ 512, although the Top 1
accuracy is only 68.3 percent, the Top 5 accuracy rises to 86.4
percent which is comparable to the Top 1 accuracy when
L ¼ þ1. Therefore, in the following experiments, BIN-

MATCH adopts:

L ¼ 512: (4)

5.2.2 Ratio Threshold for Pruning

Considering the reference and target signatures Sr and St

with the lengths of Lr and Lt, where Lr 6¼ Lt, we define

D ¼ ln
maxðLr; LtÞ
minðLr; LtÞ ¼ j lnLr � lnLtj: (5)

According to Equation (1), the possible maximum similarity
score of ðSr; StÞ computed by Jaccard Index is

JMðSr; StÞ ¼ minðLr; LtÞ
maxðLr; LtÞ ; if Sr � St or Sr � St: (6)

As presented at Line 5 in Algorithm 4, when

minðLr; LtÞ
maxðLr; LtÞ <

1

P ; (7)

the pair of comparison ðSr; StÞ is pruned. Combining
Equation (7) with Equations (5) and (6), we have

JðSr; StÞ � minðLr; LtÞ
maxðLr; LtÞ ¼

1

eD
<

1

P : (8)

Therefore, in this section, we aim to find the acceptable
maximum Jaccard Index of similarity comparison, i.e, the
minimum value ofD, to fulfill the pruning.

We randomly select 1,000 reference functions, and lever-
age BINMATCH to perform similarity comparison with the
Jaccard Index, i.e, L ¼ þ1. Since we merely consider at
most Top 10 candidates of the results, we investigate
the 10th similarity scores for all the target functions in
the resulting lists. Then, we find the average value of all the
10th similarity scores is 0.450, and the minimum value is
0.094. As a result, we obtain the candidate values of D
denoted asDavg ¼ ln 1

0:450 ¼ 0:798 andDmin ¼ ln 1
0:094 ¼ 2:364.

We further select another 3,000 reference functions ran-
domly to test Davg and Dmin. According to the ground truth,
we find the corresponding matches of the reference func-
tions in target executables. Then, we compare the signature
length of each reference function to that of its corresponding
target function. We set D 2 ð0; 2:5� with the step of 0.1,
obtaining the accumulative ratio of function pairs versus D
as presented in Fig. 10. When D ¼ 0:8, 93.6 percent of func-
tion pairs are correctly covered, and there exist 193 samples
which are incorrectly pruned. We observe the following rea-
sons leading to the incorrectness:

� Duplicated Functions. Compilers might create several
copies of a function for the resulting executable.
They ensure the jumping distance from a caller to its
callee is less than the memory page size (e.g.,
0x1000 bytes for x86), avoiding page faults when
calling functions and improving execution efficiency.

BINMATCH collects function signatures from;
(emulated) executions. The signature of the original
function would be divided into parts for its copies.

Fig. 9. Accuracy and time versus length threshold. Fig. 10. Accumulative function ratio versus pruning threshold.
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Then the signature length of a duplicated function
might be much less than that of the original one.

� Compiler-created Functions.A Compiler would replace
standard library functions with its own efficient ones
during compilation. Typically, we find ICC generates
binaries inlined with __intel_fast_* functions,
e.g., __intel_fast_memcmp. After stripping sym-
bol names, it is difficult to distinguish those functions
from user-defined ones. BINMATCH then records their
code features as well which enlarge the signature
lengths of their callers.

� Transformation betweenswitchandifstructures. In
some cases, the switch and if structures could be
transformed between each other equivalently. It is also
an optimization strategy of compilers. Comparing to a
switch, anif structure containsmore condition com-
parisons for branches, which corresponds to the code
feature of Comparison Operand Values (Section 3.1),
and generates longer signatures.

When D ¼ 2:4, 98.8 percent of samples are correctly han-
dled. We then use BINMATCH to perform similarity compari-
son for the left 37 samples (L ¼ 512), and find that the
differences between the reference and target signatures are
so large that none of their scores could be ranked within
Top 10 in the resulting lists.

Among the above reasons, duplicated functions could be
handled by combining their signatures. Since they are
exactly identical, it is possible to find all the duplicated
functions with static analysis, such as binary function hash-
ing. Then, BINMATCH records code features of duplicated
functions as one function signature which could be consid-
ered as that of the original one. However, it is difficult to
decide whether a function is the compiler-created one in a
stripped executable. It is also challenging to unify the repre-
sentations of switch and if structures of binary programs.
Although we cannot perform pruning correctly for all cases,
the above experiments indicate that the possibility is low to
make the mistakes when D ¼ 2:4. Therefore, in following
experiments, BINMATCH adopts

P ¼ e2:4 � 11:023: (9)

5.3 Analysis Across Compilation Settings

5.3.1 Cross-Optimization Analysis

In this section, we leverage BINMATCH to match binary func-
tions compiled with different optimizations. For a compiler,
higher optimization options contain all strategies specified
by lower ones. Taking GCC v4.9.3 as an example,5 the

option -O3 enables all the 68 optimizations of -O2, and
turns on another 9 optimization flags in addition. -O2 also
covers all the 32 strategies specified by -O1. Thus, we only
discuss the case of -O3 (Er) versus -O0 (Et), which has
larger differences than any other pair of cross-optimization
analysis.

Fig. 11 shows the accuracy of cross-optimization compar-
isons between each object program compiled by GCC,
Clang, and ICC separately. In Fig. 11a, the average accuracy
of Top 1, 5, and 10 is 68.9, 82.5, and 87.0 percent. The perfor-
mance of BINMATCH increases notably regrading the Top 5
and 10 target functions in the resulting lists. Thus, the possi-
bility is high for analyzers to find the real match by further
considering the first five or ten candidates in a target
function list.

The results of Clang- and ICC-compiled programs are
similar. The average accuracy of Top 1, 5, 10 is 71.8, 85.8,
90.9 percent in Fig. 11b, and 72.6, 84.6, 89.5 percent in Fig. 11c.
Since ICC fails to generate executables for convert and
ffmpeg with the corresponding compilation settings, we
only conduct experiments with the left seven object pro-
grams for ICC. In Fig. 11c, the results of puttygen are
much worse than those of other object programs. The Top 1
accuracy of puttygen is 43.6 percent, while that of every
other object exceeds 70.0 percent. When generating the exe-
cutable of puttygen optimized with -O3, ICC inlines its
own library functions to replace the standard ones, while
such optimization is not applied to the -O0 version. The test
command of puttygen (as presented in Table 1) triggers
the reference functions which frequently invoke those
inlined by ICC, leading to huge differences in signatures for
comparison. BINMATCH then produces the relative low
accuracy.

5.3.2 Cross-Compiler Analysis

In this section, BINMATCH is evaluated with binaries com-
piled by different compilers. Similar to the cross-optimiza-
tion analysis, only the case of -O3 (Er) versus -O0 (Et) is
considered. The results are presented in Fig. 12. BINMATCH

performs well in most cases. The average Top 1, 5 and 10
accuracy of all experiments is 65.0, 79.4, and 84.6 percent
separately.

Compiler-created functions of ICC still constitute the reason
that affects the performance of BINMATCH. Specifically, the
average Top 1 accuracy displayed in Figs. 12c and 12f is
67.0 percent, while that of ICC -O3 versus -O0 in Fig. 11c
is 72.6 percent. Additionally, we find floating-point number is
another reason decreasing the accuracy. GCC leverages x87
floating-point instructions to implement corresponding
operations, while Clang and ICC uses the Streaming SIMD

Fig. 11. Accuracy of cross-optimization comparison.

5. https://gcc.gnu.org/onlinedocs/gcc-4.9.3/gcc/Optimize-
Options.html
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Extensions (SSE) instruction set. x87 adopts the floating
point unit (FPU) stack to assist in processing floating-point
numbers. The operations deciding whether the stack is full
or empty insert redundant entries to the semantic signature
with comparison operand values (Section 3.1). In contrast,
SSE directly operates on a specific register set (i.e., XMM
registers) and has no extra operations. Besides, x87 could
handle single precision, double precision, and even 80-bit
double-extended precision floating-point calculation, while
SSE mainly processes single-precision data. Due to the dif-
ferent precision of representations, even though the float-
ing-point numbers are the same, their values generated by
different instruction sets are not equal, therefore affecting
the accuracy. As a result, when processing executables com-
piled by GCC (Figs. 12a, 12b, 12c, and 12d), the average
Top 1 accuracy is 63.9 percent. In contrast, when the compar-
isons are performed between Clang and ICC (Figs. 12e
and 12f), the corresponding accuracy is 68.5 percent.

5.3.3 Comparison with Existing Work

In this section, we compare BINMATCH to the state-of-the-art
methods Asm2Vec [22], Kam1n0 [21], and the industrial tool
BinDiff [24] supported byGoogle, which are all open for pub-
lic use. Thus, we could use them to detect similar binary func-
tions with the same settings as BINMATCH. Since BINMATCH is
evaluated with the executed reference functions, to make fair
comparison, we investigate the performance of the three sol-
utions with those reference functions as well. We configure
the three solutions with their default settings, and the results
are displayed in Table 2. Similar to BINMATCH, Asm2Vec
returns a list of target functions for each reference function.
Thus, we also present its accuracy of Top 1, 5, 10 respectively.
The last two rows show the average accuracy for all the
experiments and the processing time of each function on
average. Obviously, BINMATCH performs much better than
other three from the perspective of accuracy. Specifically, on
average, its Top 1 accuracy even outperforms the Top 10

Fig. 12. Accuracy of cross-compiler comparison.

TABLE 2
Comparison with the State-of-the-Art Methods Asm2Vec, Kam1n0, and the Industrial Tool BinDiff

Reference Target
BINMATCH Asm2Vec

Kam1n0 BinDiff
@1 @5 @10 @1 @5 @10

GCC -O3
GCC -O0 0.689 0.825 0.870 0.444 0.623 0.674 0.288 0.338
Clang -O0 0.614 0.748 0.808 0.417 0.580 0.629 0.212 0.273
ICC -O0 0.603 0.756 0.811 0.370 0.553 0.619 0.209 0.277

Clang -O3
Clang -O0 0.718 0.858 0.909 0.425 0.567 0.620 0.251 0.461
GCC -O0 0.667 0.826 0.871 0.412 0.577 0.627 0.271 0.457
ICC -O0 0.696 0.825 0.877 0.386 0.622 0.694 0.224 0.400

ICC -O3
ICC -O0 0.726 0.846 0.895 0.323 0.546 0.627 0.276 0.332
GCC -O0 0.666 0.816 0.865 0.343 0.399 0.465 0.182 0.219
Clang -O0 0.673 0.808 0.853 0.315 0.533 0.628 0.191 0.212

Average Accuracy 0.672 0.813 0.863 0.395 0.574 0.635 0.240 0.328

Time (s) / Function 4.151 1.255 1.332 0.210

@K represents the Top K accuracy.
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accuracy of Asm2Vec. Besides, benefiting from the adoption
of SimHash and the pruning strategy, its average processing
time of each function is around 4 seconds. Although BIN-

MATCH is still slower than the other three, considering the
accuracy, it deserves the time.

Asm2Vec adopts machine learning techniques for binary
function similarity comparison. It treats each path of a func-
tion as a document, and leverage the PV-DM model [40] to
encode the function into a feature vector. Asm2Vec explores
the co-occurrence relationships among assembly code
tokens, aiming to describe a binary function with the most
representative (or the unique) instructions. However, binary
code might be implemented with semantics-equivalent but
different kinds of instructions, especially when the code is
generated with variant compilation settings.

Kam1n0 and BinDiff are typical solutions which rely on
syntax and structure features to detect binary similar func-
tions. Kam1n0 captures features of a function from its con-
trol flow graph (CFG), and encodes the features as a vector
for indexing. Thus, essentially, it detects similar functions
by analyzing graph isomorphism of CFG. The relatively
low accuracy of Kam1n0 indicates that compilation settings
indeed affect representations of binaries, even though two
pieces of code are compiled from the same code base. In
addition to measuring the similarity of CFG, BinDiff consid-
ers other features to compare similar functions, such as
function hashing which compares the hash values of raw
function bytes, call graph edges which match functions bas-
ing on the dependencies in the call graphs, etc. By carefully
choosing suitable features to measure the similarity of func-
tions, BinDiff becomes resilient towards code transforma-
tion resulting from different compilers or optimization
options to an extent. Therefore, it performs better than

Kam1n0, but is still at a disadvantage comparing to
BINMATCH.

5.4 Analysis on Obfuscated Code

In this section, we conduct experiments to compare normal
binary programs (Er) with their corresponding obfuscated
code (Et). We adopt OLLVM to obfuscate binary code which
is optimized with -O3 and -O0 separately (OLLVM bases the
compilation on Clang). Because obfuscation would insert
much redundant code, resulting in huge length differences
of signatures for comparison, we disable the pruning strat-
egy in this part of experiments, i.e.,P ¼ þ1.

The experimental results are shown in Table 3. Results of
Asm2Vec and BinDiff are also presented as references.
OLLVM provides three techniques to fulfill the obfuscation.
Instruction substitution (SUB) replaces standard operators
(e.g., addition operators) with sequences of functionality-
equivalent, but more complex instructions. It obfuscates
code on the syntax level, affecting the comparison accuracy
of Asm2Vec which treats binaries as documents, but posing
fewer threats to BINMATCH which is semantics-based.

Bogus control flow (BCF) adds opaque predicates to a basic
block, which breaks the original basic block into two. Control
flow flattening (FLA) generally breaks a function up into basic
blocks, then encapsulates the blocks with a selective struc-
ture (e.g., the switch structure) [41]. It creates a state variable
for the selective structure to decide which block to execute
next at runtime via conditional comparisons. BCF and FLA
both change the structure of the original function, i.e., modi-
fying the control flow. They insert extra code which is irrele-
vant to the functionality of the original function, generating
redundant semantic features which are indistinguishable
from normal ones (e.g., comparison operand values of

TABLE 3
Accuracy of Comparing with Obfuscated Code

Reference Target Obf.
BINMATCH Asm2Vec

BinDiff
@1 @5 @10 @1 @5 @10

GCC -O3

OLLVM-O3
SUB 0.755 0.873 0.912 0.530 0.710 0.760 0.678
BCF 0.615 0.722 0.773 0.509 0.676 0.718 0.311
FLA 0.521 0.629 0.705 0.358 0.529 0.565 0.430

OLLVM-O0
SUB 0.692 0.821 0.859 0.336 0.489 0.568 0.385
BCF 0.504 0.561 0.580 0.302 0.473 0.535 0.211
FLA 0.452 0.495 0.551 0.166 0.280 0.323 0.312

Clang -O3

OLLVM-O3
SUB 0.890 0.977 0.985 0.766 0.874 0.897 0.805
BCF 0.647 0.752 0.842 0.624 0.777 0.814 0.334
FLA 0.560 0.616 0.682 0.470 0.633 0.680 0.541

OLLVM-O0
SUB 0.758 0.901 0.942 0.351 0.525 0.590 0.497
BCF 0.532 0.592 0.616 0.356 0.524 0.567 0.053
FLA 0.485 0.546 0.611 0.241 0.398 0.441 0.280

ICC -O3

OLLVM-O3
SUB 0.621 0.750 0.805 0.482 0.632 0.691 0.609
BCF 0.718 0.848 0.896 0.398 0.558 0.622 0.208
FLA 0.473 0.523 0.609 0.292 0.414 0.469 0.272

OLLVM-O0
SUB 0.730 0.847 0.876 0.264 0.409 0.482 0.248
BCF 0.501 0.570 0.605 0.254 0.368 0.423 0.095
FLA 0.507 0.556 0.631 0.148 0.239 0.296 0.160

Average Accuracy 0.638 0.736 0.784 0.410 0.560 0.613 0.374

The target executables are obfuscated with OLLVM (BCF: Bogus Control Flow, FLA: Control Flow Flattening, SUB: Instructions Substitution). @K represents
the Top K accuracy.
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opaque predicates). Thus, they affect the comparison accu-
racy of BINMATCH. For the settings of GCC/Clang/ICC -O3
versus OLLVM -O0, when comparing with functions obfus-
cated by BCF, the average Top 1 accuracy is 51.3, and 48.1
percent for FLA, while that of GCC/Clang/ICC -O3 versus
Clang -O0 is 66.8 percent. However, BINMATCH still achieves
more than 1.5 times the average Top 1 accuracy of Asm2Vec,
and 1.7 times of BinDiff, i.e., 63.8 percent of BINMATCH, 41.0
percent of Asm2Vec, and 37.4 percent of BinDiff. On average,
the Top 1 accuracy of BINMATCH still outperforms the Top 10
accuracy of Asm2Vec.

Additionally, because the pruning strategy is disabled,
BINMATCH spends 21.678 seconds on average to process
each reference function, while that of comparisons with
pruning is 4.151 seconds. The results indicate the impor-
tance of the pruning strategy for improving the efficiency.

5.5 Analysis Across Architectures

In this section, we evaluate the capacity of BINMATCH to
compare the similarity of binary functions of variant ISAs,
across x86, ARM and MIPS. All the executables for compari-
son are compiled with GCC -O3. The ARM and MIPS bina-
ries are generated or executed in the environments
emulated by QEMU [42].

The experimental results are presented in Table 4,
which are compared to those of CACompare [25], the state-
of-the-art cross-architecture similar binary function detector.
The average Top 5 accuracy of BINMATCH is comparable to
that of CACompare. Besides, for each reference function,
BINMATCH is 1.2 seconds faster than CACompare on average.
Since there are 3,078 reference functions, BINMATCH then
saves about 1 hour for the experiments. In fact, when all the
similarity comparisons are performed with Jaccard Index
and LCS, i.e., L ¼ þ1, BINMATCH is able to achieve the aver-
age Top 1 accuracy of 86.2 percentwhich indicates the upper
bound capacity of BINMATCH. Nevertheless, it needs to spend
137.760 seconds on average in processing each reference
function. Thus, BINMATCH has the ability to become more
accurate than CACompare, but it also requires more time.
According to the scenarios and requirements, users could
choose the suitableL for it to balance accuracy and efficiency.

CACompare samples a function with random values as
inputs, and extracts the code features via emulation as well.
Illegal memory accessing is also tackled by providing ran-
dom values. However, the random values lack semantics.
They could hardly bypass the input checks of a function,
and usually trigger paths which handle exceptions. In

contrast, BINMATCH captures the signatures of target func-
tions by emulating them with runtime values migrated
from real executions. As a result, in some cases, BINMATCH

is more robust than CACompare. Besides, it could generate
results with higher accuracy if there is no strict time limit.

5.6 Threats to Validity

We construct the dataset of the experiments by compiling
binaries from nine open-source projects (Section 5.1.1).
Besides, we conduct experiments to infer suitable parameter
values for BINMATCH (Section 5.2). Although the dataset con-
sists of various types of programs, it cannot cover all cases
in the real world, neither can the corresponding parameter
values of L and P.

BINMATCH adoptsIDAPro to acquire information of binary
functions (Section 4.1). However, function boundary identifi-
cation of IDA Pro is not perfect, which is actually still an issue
of reverse engineering [43], [44], [45]. Additionally, BINMATCH

is implemented with Valgrind and angrwhich both adopt
VEX-IR as the intermediate representation (Section 4.2).
However, VEX-IR is not perfect that 16 percent x86 instruc-
tions could not be lifted, although only a small subset of
instructions is used in executables in practice and VEX-IR
could handle most cases [46]. The incompleteness of VEX-IR
might affect the accuracy of semantics signature extraction,
while BINMATCH still produces promising results in above
experiments.

6 DISCUSSION AND FUTURE WORK

6.1 Application Scope and Scenarios

In this paper, BINMATCH is implemented to process 32-bit
code. The solution could be applied to 64-bit code as well.
To fulfill the target, there might exist the following
problems:

� Calling Conventions. BINMATCH identifies and assigns
the arguments of a binary function according to its
calling convention (Sections 3.2 and 3.3.2). 64-bit
instruction set architectures commonly prepare argu-
ments with specific registers, e.g., RDI, RSI, RDX,
RCX, R8, R9 of x86-64 on Linux, and additional ones
are passed via the stack. Thus, we need to consider
those specific registers first, then analyze the stack if
necessary.

� Floating-point Numbers. Different instruction set
architectures employ instructions of various preci-
sion to process floating-point numbers, such as x87
and SSE of x86, SSE2 of x86-64. That would affect the
detection accuracy of BINMATCH (Section 5.3.2). A
possible solution is to unify the precision of floating-
point values, representing the high-precision value
with lower precision, e.g., representing double-preci-
sion values with single-precision. That would be left
as future work.

Because BINMATCH needs to execute the reference func-
tions, it is more suitable for scenarios where the reference
functions have available test cases, such as known vulnera-
bility detection (as shown in Section 2.1), patch analysis [13],
[47]. In contrast, static methods are applicable to cases
which require the high coverage of the reference code, such

TABLE 4
Performance of Cross-Architecture Comparison

Settings
BINMATCH

CACompare
@1 @5 @10

x86 vs. ARM 0.628 0.743 0.798 0.807
x86 vs. MIPS 0.721 0.827 0.866 0.770
ARM vs. MIPS 0.703 0.816 0.867 0.810

Average Accuracy 0.667 0.789 0.839 0.795

Time (s) / Function 3.451 4.694

All executables are compiled with GCC -O3, but with different instruction set
architectures. @K represents the Top K accuracy.
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as plagiarism detection [2]. Dynamic methods are appropri-
ate for the situation where the code behaviors are empha-
sized or the capacity of deobfuscation is required, such as
malware lineage analysis [11].

6.2 Obfuscation

In the evaluation, BINMATCH is shown to be effective in ana-
lyzing obfuscated binary code which is generated by
OLLVM (Section 5.4). The robust of BINMATCH is due to the
nature of dynamic analysis and the adoption of semantics-
based signatures. However, that does not mean BINMATCH

could handle all kinds of obfuscations. Besides, the OLLVM

code actually affects the accuracy of BINMATCH in the experi-
ments. When analyzing benign code, BINMATCH achieves
better results. For GCC/Clang/ICC -O3 versus Clang -O0,
the average Top 1, 5, and 10 accuracy is 66.8, 80.4 and 85.8
percent, while for GCC/Clang/ICC -O3 versus OLLVM -O0,
the corresponding ratio is 60.9, 70.1, and 74.0 percent respec-
tively. In the literature, deobfuscation has been well stud-
ied [48], [49], [50], [51]. Therefore, if BINMATCH fails to detect
an obfuscated function, it is a better choice to deobfuscate it
first, then perform further analysis.

6.3 Function Interfaces

In this paper, we assume a pair of matched functions shares
the same interface, i.e., the same argument number and
order. When the interface of the target function is modified,
e.g., by obfuscation, BINMATCH becomes ineffective. For
example, the reference function R has the interface

R ðrarg 0; rarg 1; rarg 2Þ;
while the interface of its corresponding match (target

function T) is

T ðtarg 2; targ 1; targ 0; targ 3Þ:

Note that not only a redundant argument targ_3 is
added to T via obfuscation, but also the first three argu-
ments are disordered. For targ_3, as described in the pre-
vious section, extra analysis is necessary, such as
deobfucation. That is out of the scope of this paper. For the
disordering, a possible solution is to provide Twith the per-
mutation of R’s argument list. In the example, after targ_3
is removed, BINMATCH generates the permutation of R’s
argument list, overall 6 (¼ P 3

3 ) cases, then assigns them to T
and computes the similarity score separately. The largest
one among the six values, theoretically when the order is
(rarg_2, rarg_1, rarg_0), is considered as the final simi-
larity score of (R, T). It is left as future work.

6.4 Accuracy versus Efficiency

It is a classical issue of program analysis. In this paper, since
the lengths of signatures extracted via (emulated) execu-
tions are huge, we propose the hybrid method, combining
LCS and SimHash for similarity comparison, to reach the
compromise between efficiency and accuracy (Section 3.4).
To improve the accuracy, it is possible to execute the refer-
ence function with different inputs to capture more seman-
tics information and generate the signature. Furthermore,
we could adopt the metrics from testing to evaluate
each run of the reference function, such as delta code

coverage [52]. Specifically, BINMATCH only records the signa-
ture extracted from the execution covering enough new
code of the function, which is not executed before. It is left
as future work.

7 RELATED WORK

Binary code similarity comparison (or clone detection) has
many important applications in fields of software engineer-
ing and security, typically including plagiarism detec-
tion [19], [53], bug detection [15], malware analysis [11], etc.

Syntax and structural features are widely adopted to
detect binary clone code. Sæbjørnsen et al. [54] detect binary
clone code basing on opcode and operand types of instruc-
tions. Hemel et al. [55] treat binary code as text strings and
measure similarity by data compression. The higher the
compression rate is, the more similar the two pieces of
binary code are. Khoo et al. [5] leverage n-gram to compare
the control flow graph (CFG) of binary code. David et al. [6]
measure the similarity of binaries with the edit distances of
their CFGs. BinDiff [24] and Kam1n0 [21] extract features
from the CFG and call graphs to search binary clone
functions.

As discussed earlier in this paper, the main challenge of
binary code similarity comparison is semantics-equivalent
code transformation resulting from link-time optimization,
obfuscation, etc. Because of the transformation, representa-
tions of binary code are altered tremendously, even though
the code is compiled from the same code base. Therefore,
syntax and structure-based methods become ineffective,
and semantics-based methods prevail. Jhi et al. [2] and
Zhang et al. [3] leverage runtime invariants of binaries to
detect software and algorithm plagiarism. Ming et al. [11]
infer the lineage of malware by code similarity comparison
with the system call traces as the semantic signature. How-
ever, those solutions require the execution of binary pro-
grams and cannot cover all target functions. Egele et al. [18]
propose blanket execution to match binary functions with
full code coverage which is achieved at the cost of detection
accuracy. Luo et al. [19], [53] and Zhang et al. [4] detect soft-
ware plagiarism by symbolic execution. Although their
methods are resilient to code transformation, symbolic exe-
cution is trapped in the performance of SMT/SAT solvers
which cannot handle all cases, e.g., indirect calls. David et al.
propose Esh [56] which decomposes the CFG of a binary
function into small blocks and measures the similarity of the
small blocks basing on a statistical model. However, the
boundaries of CFG blocks would be changed by code trans-
formation, affecting the accuracy of the method. BinSe-
quence [57] explores the control flow graphs of binary
functions and aligns the paths for similarity measurement.
Then, it would suffer from control flow transformation, e.g.,
control flow flattening.

More recently, with the prevalence of IoT devices, binary
code similarity comparison is proposed to perform on ARM
and MIPS, or even across architectures. Multi-MH [15], dis-
covRE [16], Genius [17], and Xmatch [58] are proposed to
detect known vulnerabilities and bugs in multi-architecture
binaries via code similarity comparison. BinGo [7], CACom-
pare [25], and GitZ [59] are proposed to analyze the similar-
ity of binary code across architectures as well. However,
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discovRE and Genius still heavily depend on the CFG of a
binary function. Xmatch extracts symbolic expressions of a
binary function as the features, and treats them as sets for
similarity comparison, ignoring the relative order (semantics
information) of the expressions. Multi-MH, BinGo and
CACompare sample a binary function with random values
to capture corresponding I/O values as the signature, while
the random values are meaningless that they merely trigger
limited behaviors of the function. Thus, it is difficult for them
to cover the core semantics of a binary function. Similar to
Esh, GitZ bases the analysis on blocks of functions as well. It
lifts LLVM-IR from function blocks, and counts on the opti-
mization strategies of Clang to normalize the representations
of the IR code. Then, it measures the similarity of IR code
syntactically. Following their previous work (Esh and GitZ),
David et al. propose FirmUp [60] to detect known vulnerabil-
ities of firmware. They consider the similarity comparison as
a back-and-forth gamewhich further ensures the accuracy of
the detection. BinArm [61] is propose to detect known vul-
nerabilities of firmware as well. It introduces a multi-stage
strategy which first filters functions with the syntax and
structure information, then performs graphmatching of con-
trol flow graphs.

Additionally, machine learning techniques are also
adopted for binary code similarity comparison. Xu et al. [62]
leverage the neural network to encode CFGs of binary code
into vectors. aDiff [63] trains the convolutional neural net-
work with raw bytes of binary code, generating the best
parameter values for the model. Then they apply the model
to comparing the similarity of binary code. Thus, essentially,
the two solutions still process with syntax and structure fea-
tures. Asm2Vec [22] considers the assembly code disas-
sembled from the binary code as documents. It attempts to
discover the semantics hidden in the co-occurrence relation-
ships among the assembly tokens, and adopts the most repre-
sentative instructions as the feature of a function. However,
Asm2Vec still originates in the text of assembly code as well.
It is not robust enough to the semantics-equivalent code trans-
formation, as indicated in the experiments (Section 5.3.3).
Inspired by thework of Luo et al. [19], Zuo et al. [64] first com-
pute the likeness of basic blocks, then align the basic blocks of
a path, and finally infer the similarity of code components
with multiple paths. They regard binary code as natural lan-
guage, embedding instructions basing onword2vec [65], then
adopting the neural machine translation model to compare
basic blocks in a deep learningmanner. Comparing to the pre-
vious basing on symbolic execution, the solution becomes
muchmore efficient.

To sum up, the topic of binary code similarity compari-
son mainly focuses on two points: i) what signature to
adopt, such as opcodes and operand types (syntax),
CFG (structure) and system calls (semantics); ii) how to cap-
ture the signatures, such as statically disassembling, sam-
pling, or dynamically running, etc. BINMATCH leverages the
combination of output values, comparison operand values,
and invoked standard library functions as the signature
which is able to better reveal the semantics of a binary
function. Besides, it captures the signature via both execu-
tion and emulation, which not only ensures the richness
of semantics, but also covers all target functions to be
analyzed.

8 CONCLUSION

Binary code similarity comparison is a fundamental meth-
odology which has many important applications in fields of
software engineering and security. In this paper, we pro-
pose BINMATCH to compare the similarity of binary code.
BINMATCH completely relies on semantics-based signatures
which are extracted either in a static or in a dynamic man-
ner, via (emulated) executions. Thus, it is able to achieve
high comparison accuracy and coverage at the same time.
Besides, to balance accuracy and efficiency, in addition to
the longest common subsequence algorithm, the accurate
string matching method, BINMATCH also adopts the approxi-
mate matching technique SimHash for the function signa-
ture similarity measurement. The experimental results
show that BINMATCH not only is robust to the semantics-
equivalent code transformation caused by different compi-
lation settings, commonly-used obfuscations, and variant
ISAs, but also fulfills the function comparison efficiently.
Additionally, BINMATCH also achieves better performance
than the state-of-the-art solutions as well as industrial tool
of binary code similarity comparison.
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