
Binary Cryptographic Function Identification via Similarity

Analysis with Path-Insensitive Emulation

YIKUN HU
∗
, Shanghai Jiao Tong University, China and State Key Laboratory of Cryptology, China

YITUO HE, Shanghai Jiao Tong University, China
WENYU HE, Shanghai Jiao Tong University, China
HAORAN LI, Shanghai Jiao Tong University, China
YUBO ZHAO, Shanghai Jiao Tong University, China
SHUAI WANG, The Hong Kong University of Science and Technology, China
DAWU GU

∗
, Shanghai Jiao Tong University, China and State Key Laboratory of Cryptology, China

It becomes an essential requirement to identify cryptographic functions in binaries due to their widespread
application in modern software. The technology fundamentally supports numerous software security analyses,
such as malware analysis, blockchain forensics, etc. Unfortunately, the existing methods still struggle to strike
a balance between analysis accuracy, efficiency, and code coverage, which hampers their practical application.

In this paper, we propose BinCrypto, a method of emulation-based code similarity analysis on the interval
domain, to identify cryptographic functions in binary files. It produces accurate results because it relies on the
behavior-related code features collected during emulation. On the other hand, the emulation is performed
in a path-insensitive manner, where the emulated values are all represented as intervals. As such, it is able
to analyze every basic block only once, accomplishing the identification efficiently, and achieve complete
block coverage simultaneously. We conduct the experiments with nine real-world cryptographic libraries. The
results show that BinCrypto achieves the average accuracy of 83.2%, nearly twice that of WheresCrypto, the
state-of-the-art method. BinCrypto is also able to successfully complete the tasks, including statically-linked
library analysis, cross-library analysis, obfuscated code analysis, and malware analysis, demonstrating its
potential for practical applications.

CCS Concepts: • Security and privacy→ Software reverse engineering.

Additional Key Words and Phrases: Static Analysis, Binary Analysis, Similarity Analysis, Cryptographic
Function Identification

ACM Reference Format:
Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu. 2025. Binary Cryptographic
Function Identification via Similarity Analysis with Path-Insensitive Emulation. Proc. ACM Program. Lang. 9,
OOPSLA1, Article 81 (April 2025), 29 pages. https://doi.org/10.1145/3720415

∗Corresponding authors.

Authors’ Contact Information: Yikun Hu, yikunh@sjtu.edu.com, Shanghai Jiao Tong University, Shanghai, China and State
Key Laboratory of Cryptology, Beijing, China; Yituo He, yituo_he@sjtu.edu.cn, Shanghai Jiao Tong University, Shanghai,
China;WenyuHe, wenyu_he@sjtu.edu.cn, Shanghai Jiao Tong University, Shanghai, China; Haoran Li, haoranli@sjtu.edu.cn,
Shanghai Jiao Tong University, Shanghai, China; Yubo Zhao, yubozhao@sjtu.edu.cn, Shanghai Jiao Tong University,
Shanghai, China; ShuaiWang, shuaiw@cse.ust.hk, The Hong Kong University of Science and Technology, Hong Kong, China;
Dawu Gu, dwgu@sjtu.edu.cn, Shanghai Jiao Tong University, Shanghai, China and State Key Laboratory of Cryptology,
Beijing, China.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/4-ART81
https://doi.org/10.1145/3720415

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

HTTPS://ORCID.ORG/0000-0002-2035-7176
HTTPS://ORCID.ORG/0009-0003-0563-9022
HTTPS://ORCID.ORG/0009-0009-9160-3889
HTTPS://ORCID.ORG/0009-0003-1538-107X
HTTPS://ORCID.ORG/0009-0001-4505-0971
HTTPS://ORCID.ORG/0000-0002-0866-0308
HTTPS://ORCID.ORG/0000-0002-0504-9538
https://doi.org/10.1145/3720415
https://orcid.org/0000-0002-2035-7176
https://orcid.org/0009-0003-0563-9022
https://orcid.org/0009-0009-9160-3889
https://orcid.org/0009-0003-1538-107X
https://orcid.org/0009-0001-4505-0971
https://orcid.org/0000-0002-0866-0308
https://orcid.org/0000-0002-0504-9538
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3720415

81:2 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

1 Introduction

Cryptography plays a vital role in modern software to protect confidentiality, integrity, and
authenticity, such as in cryptocurrency wallets [Han et al. 2021; Houy et al. 2023], SSL/TLS
protocol [Oppliger 2009], etc. Its misuse or misimplementation may cause devastating conse-
quences (e.g., POODLE vulnerability [POODLE 2014]). It also could be abused in malicious software
to threaten cybersecurity. Ransomware, for example, is a type of malware that blocks access to
a victim’s data by encryption for ransom [O’Gorman and McDonald 2012]. Therefore, to ensure
software security, it is essential to identify the cryptographic implementations in binaries, which
facilitates the downstream cryptography-related security analysis, e.g., cryptographic vulnerability
detection, malware analysis, etc.

The existing methods generally focus on identifying standard cryptographic functions. Despite
the considerable efforts in this field, they still struggle to strike a balance among various analysis
metrics, including accuracy, efficiency, and code coverage. One typical category of those methods
employs heuristic patterns to accomplish the identification. They have difficulty in producing
accurate results, although they are fast and cover all the code. For example, FindCrypt2 [Guilfanov
2006] and Signsrch [Auriemma 2016] search the constant values of cryptographic algorithms.
ReFormat [Wang et al. 2009] observes the ratio of bitwise operations for the identification. Due to
the code transformation (e.g., compiler optimization), the resultant binaries would exhibit significant
differences in syntax and structure, although they are compiled from the same codebase [Egele et al.
2014]. These methods cannot generally identify variant implementations of the same cryptographic
algorithm accurately.

Recently, more sophisticated program analysis techniques have been adopted for the identifica-
tion. However, they still suffer from the inherent limitations of static and dynamic analysis to solve
the aforementioned problem. The static methods rely on the isomorphism of data flow graphs,
which are unstable across code transformation, leading to relatively lower accuracy [Lestringant
et al. 2015; Meijer et al. 2021]. While WheresCrypto [Meijer et al. 2021] is able to handle both
standard and proprietary algorithms, when confronted with code transformation, it still underper-
forms in analyzing even standard cryptographic functions (§5.3). By contrast, the dynamic methods
depend on input-output relations or loop structures captured from execution traces to achieve the
goal, while they only cover limited code triggered by the input [Calvet et al. 2012; Gröbert et al.
2011; Li et al. 2012; Xu et al. 2017b]. Besides, since execution traces usually contain large amounts
of data, dynamic methods tend to be time-consuming, which hinders their practical application.
In this paper, we propose BinCrypto, a method of emulation-based code similarity analysis

with intervals, to identify cryptographic functions of known algorithms1 in binaries. Different
implementations of the same cryptographic algorithm have equivalent semantics. Therefore, given
the same input, their output should be similar. BinCrypto emulates the execution of binary code
with pre-defined input, performing similarity analysis based on the emulated behavior-related
values. Then, it is able to handle variant binary code of the same algorithm. Additionally, the
emulation is performed in a path-insensitive manner. The emulated values are merged as intervals
at specific program points to avoid path explosion. Meanwhile, all basic blocks are covered, and
each one is processed only once. In this manner, BinCrypto is practical for striking a balance
between analysis accuracy, efficiency, and code coverage.

Specifically, BinCrypto involves the following main steps. Given the binary code, it first recovers
the static information of binary functions via preprocessing. Then, it emulates each function
with pre-defined input, collecting behavior-related values during the process. Finally, BinCrypto
calculates the similarity score by comparing the values to those of the reference implementation.

1Standard algorithms or proprietary ones which have been analyzed or understood.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:3

The function with the highest score is considered to implement the same cryptographic algorithm
as the reference.
We evaluate BinCrypto with nine real-world binary cryptographic libraries on the x64 Linux

platform. The experimental results show that BinCrypto is able to identify and distinguish variant
cryptographic functions which are compiled with various compilers and optimization options. It
attains the average accuracy of 83.2%, nearly twice that of WheresCrypto, the state-of-the-art
method of cryptographic function identification, with less processing time. It also surpasses five
other representative methods regarding analysis accuracy by a large margin. Furthermore, we show
the potential of BinCrypto for practical applications, including statically-linked library analysis,
cross-library analysis, obfuscated code analysis, and malware analysis.

In summary, the paper makes the following contributions.
• We propose BinCrypto, a method based on code similarity analysis to identify cryptographic
functions of known algorithms in binaries. It relies solely on behavior-related values as code
features to accurately identify variant implementations of the same cryptographic algorithm.
• BinCrypto adopts path-insensitive emulation to extract binary code features, and the emu-
lated variable values are represented as intervals. In this way, it is able to achieve complete
block coverage efficiently.
• We have implemented a prototype of BinCrypto on the 64-bit Linux platform. It is evaluated
with nine real-world cryptographic libraries. The results show that BinCrypto is much
more accurate than the baselines, and spends less processing time than WheresCrypto,
the state-of-the-art method. We also demonstrate its potential for practical application in
statically-linked library analysis, cross-library analysis, and malware analysis. The extended
version of the paper is provided at [Hu et al. 2025] which includes full details of this work.

2 Motivation and Overview

In this section, we first outline the limitations of existing techniques in binary cryptographic code
identification and summarize the challenge of the problem, which motivate BinCrypto. Then, we
explain the basic idea of BinCrypto and present an overview of the system.

2.1 Limitations of Existing Techniques

2.1.1 Heuristic-Based Techniques. One category of classic techniques adopts constants as designed
in cryptographic algorithms to identify their implementations in binaries. They search for such
patterns in the data and code sections of binary files. For example, Signsrch [Auriemma 2016]
relies on S-box values to detect AES in NSS [Mozilla [n. d.]]. However, they become less effective
in handling code variants in practice, which might hide those constants to prevent cryptanalysis
attacks [Das et al. 2013]. For instance, Mbed-TLS generates AES S-box during execution instead
of storing them as hard-coding values in the data section.1 Signsrch then fails to detect AES
in Mbed-TLS. On the other hand, operation distribution is a typical pattern of cryptographic
implementations. For example, ReFormat [Wang et al. 2009] observes the ratio of arithmetic and
bitwise operations to infer if a function is relevant to cryptography. However, it can hardly decide
the specific algorithm that the function implements.

2.1.2 Graph-Based Techniques. Since cryptographic primitives are sets of arithmetic and logic
operations, the structural relationships between the data and operations are considered to
be consistent in binaries. WheresCrypto [Meijer et al. 2021] and the technique proposed by
Lestringant et al. [Lestringant et al. 2015] then base the identification on the isomorphism analysis
1Dynamic generation of AES S-box is a well-established research field to protect the implementations from modern
cryptanalysis attacks, such as side-channel attacks [Ashokkumar et al. 2018; Singh et al. 2017].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

81:4 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

Fig. 1. WheresCrypto’s Results on nettle_camellia_crypt from libnettle v3.9.1

of the data flow graphs (DFGs). Unfortunately, data flow relationships are still vulnerable to code
transformation. For example, compiler optimization might change code representations and struc-
tures tremendously [Chandramohan et al. 2016; Wang et al. 2023; Wang and Wu 2017; Xue et al.
2018], which alters those of DFG accordingly. Figure 1 presents the results of WheresCrypto to
analyze the core function of Camellia (nettle_camellia_crypt), a Feistel cipher [Aoki et al. 2000],
from Nettle [Möller 2013] which is compiled with GCC-O3. It fails to find the Feistel structure in
the function, only considering it as the sequential block permutation. Furthermore, it misidentifies
the function as AES.

2.1.3 Execution-Based Techniques. Cryptographic algorithms usually employ lots of loops for
implementation, because they largely depend on repeated data transformation [Lutz 2008]. Then,
the execution-based techniques are proposed to capture fine-grained semantics from execu-
tion traces, leveraging runtime data in iterations to identify cryptographic implementations,
e.g., CryptoHunt [Xu et al. 2017b] and Aligot [Calvet et al. 2012]. Crafted inputs are the prelimi-
nary of these techniques such that they are able to cover the target code. The limited code coverage
hinders their practical application. Besides, dynamic instrumentation is heavy-weight, and trace
analysis is time-consuming due to the substantial amount of data collected during loop execution.
For instance, CryptoHunt introduces a 5-6X slowdown for online trace logging and spends 30.8
minutes on offline analysis to find AES in OpenSSL [Xu et al. 2017b].

2.2 Challenge: Practicality of the Analysis

The existing techniques identify binary cryptographic functions generally relying on similarity
analysis. They prepare reference implementations beforehand, extract features from the target
code under analysis, and compare the similarity between the features and those of the references.
Unfortunately, it is challenging to achieve the balance between accuracy, efficiency, and code coverage
of the analysis, rendering the existing techniques impractical.

2.2.1 Accuracy. Optimization is the core step of compilation to generate binary code, and obfusca-
tion is a common practice for code protection. They are both semantics-preserving but alter the
representation and structures of the code significantly. In addition, even the source code of the
same algorithm could be implemented quite differently, which further leads to differences in the
binaries. As such, it is difficult to accurately perform the comparison between the target code and
references on the binary level. The static techniques, e.g., those based on heuristics and graphs,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:5

S1:〚a〛= x

()
<x = 3, y = 4>

S2: b =〚y〛+ 1

(W:3)
<...>

(W:3, R:6)
<..., b = 7>

S3: b =〚x〛- 2
()
< >

S4: ...

S5: return b

(W:3, R:6, R:5, O:7)
<..., b = 7>

S6: c = b << 1

(...)
<..., b = 7>

()
< >

3a

64
53

memory
state after S1

P1

(a) Single-path Emulation

S1:〚a〛= x

()
<x = 3, y = 4>

S2: b =〚y〛+ 1

(W:3)
<...>

(W:3, R:6)
<..., b = 7>

S3: b =〚x〛- 2
(W:3, R:5)
<..., b = 3>

S4: ...

S5: return b
(W:3, R:6, R:5, O:7, 3)
<..., b = 7 or 3>

S6: c = b << 1

(...)
<..., b = 7 or 3>

(...)
<..., b = 7 or 3, c = 14 or 6>

3a

64
53

memory
state after S1

P1 P2

(b) Multiple-path Emulation

S1:〚a〛= x

()
<x = 3, y = 4>

S2: b =〚y〛+ 1

(W:3)
<...>

(W:3, R:6)
<..., b = 7>

S3: b =〚x〛- 2
(W:3, R:5)
<..., b = 3>

S4: ...

S5: return b

(W:3, R:6, R:5, O:[3, 7])
<..., b = [3, 7]>

S6: c = b << 1

(...)
<..., b = [3, 7]>

(...)
<..., b = [3, 7], c = [6, 14]>

3a

64
53

memory
state after S1

(c) Path-insensitive Emulation

Fig. 2. Examples of code emulation and feature extraction. The branching statements in the control flow

graphs are omitted. At each program point, (·) and <·> contains the code features and emulated program

state respectively. W, R, and O represents written value, read value, and outputted value, separately. J·K in a

graph node means memory accessing.

extract features from assembly code or code graphs, which can hardly handle optimization and
obfuscation.

2.2.2 Efficiency and Coverage. Intuitively, for better accuracy, it is necessary to gather more
expressive code features that are closely related to semantics. However, that requires covering all
the code and learning code behaviors, which is time-consuming. Thus, it is tough to obtain the
code semantics efficiently with the complete coverage. Although the dynamic techniques, e.g., those
based on actual execution, can obtain information about code behaviors, they still suffer from the
overhead of online instrumentation and limited code coverage.

2.3 Basic Idea of BinCrypto

BinCrypto identifies binary cryptographic functions via similarity analysis with path-insensitive
emulation on the interval domain. The insight is that two pieces of semantics-equivalent code
would generate similar output if provided with the same input. It is inspired by the Schwartz–Zippel
lemma to solve the problem of polynomial identity testing (PIT), which aims to determine whether
two polynomials are equal [Egele et al. 2014; Saxena 2009, 2014]. The lemma states that, given a
randomly chosen input, the probability is low that two polynomials yield equal results if they are
inequivalent [Schwartz 1980; Zippel 1979]. Hence, given the same input, semantics-equivalent code
should produce similar output, even though the input is composed of random values.

2.3.1 Accuracy: Code Emulation for IO Values. Considering the target function and reference
cryptographic function, BinCrypto adopts emulation to interpret themwith the same input. During
the process, IO values are collected as code features for accurate similarity analysis. Features of IO
values have been shown to be effective for cryptographic function identification [Calvet et al. 2012;
Li et al. 2012]. As long as the target function implements the same algorithm as the reference one,
their emulated IO values should be similar, even though they are varied in code representations
and structures.

Technically, the emulation adopted by BinCrypto aims to reason about program behaviors via
static code interpretation. It can be started at any program point with arbitrary inputs, obtaining
possible variable values triggered by the inputs. Figure 2a depicts how the emulation works.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

81:6 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

Assuming the input is < 𝑥 = 3, 𝑦 = 4 >, the emulated execution triggers the path 𝑃1, i.e., 𝑆1 ⇀ 𝑆2 ⇀

𝑆4 ⇀ 𝑆5, and IO values are collected accordingly. Specifically, 𝑆1 writes 𝑥 ’s value 3 into memory
at address 𝑎. BinCrypto then records𝑊 : 3 as a feature of Writting. Similarly, it finds 𝑆2 reads
value 6 from memory, then 𝑆5 returns 𝑏’s value 7 as the output, achieving the feature sequence of
(𝑊 : 3, 𝑅 : 6,𝑂 : 7) at last, where 𝑅 and 𝑂 mean features of Reading and Outputting separately.

2.3.2 Efficiency and Coverage: Interval-Based Path-Insensitive Analysis. BinCrypto performs the
emulation path-insensitively on the interval domain to achieve the complete block coverage
efficiently. Originally, for a single input, the emulation covers only one path, as shown in Figure 2a.
Since it can be started at any program point, for complete coverage, a naive solution is to conduct
the single-path emulation multiple times until all the code is covered, which however would lead
to state explosion.
Figure 2b shows the example of multiple-path emulation. After processing the path 𝑃1 in the

first round, 𝑆3 becomes the target to be covered next. With the inherited program state from 𝑆1,
the emulation is started from 𝑆3 and triggers the path 𝑃2,1 i.e., 𝑆1 ⇀ 𝑆3 ⇀ 𝑆4 ⇀ 𝑆5,2 finding that
𝑆3 reads value 5 from address 3 and 𝑏 gets another value 3 as the outputting feature. Lastly, 𝑆6 is
emulated for the complete code coverage with the program state after processing 𝑆4 as the input.
Since 𝑏 has two possible values, i.e., 7 or 3, 𝑆6 has to be emulated twice to complete the analysis.
Consequently, as the emulation goes deeper, the issue of state explosion would occur to hamper
the efficiency of the analysis.
To this end, BinCrypto traverses the code in a path-insensitive manner. At each branching

point, it emulates each succeeding path respectively and merges the emulated program states of all
the paths at the following post-dominator. The variable values are also joined and represented as
intervals, which over-approximate the possible values of those variables under the given random
input. As such, BinCrypto is able to process each basic block only once, avoiding the explosion of
emulated program states and saving analysis time. Functions implementing the same cryptographic
algorithms should exhibit more correlated features than those of inequivalent semantics.
Figure 2c presents the interval-based path-insensitive emulation of BinCrypto. Starting from

𝑆1, it traverses 𝑆2 and 𝑆3 separately and merges the two program states at 𝑆4, the immediate post-
dominator of 𝑆1. The emulated values are then represented with intervals, e.g., 𝑏 = [3, 7] at 𝑆4.
Similarly, 𝑆5 and 𝑆6 are processed respectively, with the program state after the emulation of 𝑆4,
ensuring that every block is covered and processed only once. The emulated variable values are
represented as intervals accordingly as well.

2.4 System Overview of BinCrypto

Given the target binary file, i.e., an executable or a library, BinCrypto extracts IO behaviors as
features of each target function via path-insensitive code emulation. The features are then compared
to those of the reference cryptographic functions to calculate similarity scores. The higher the score
is, the more likely it is that the target function implements the same algorithm as the reference
one. The target function with the highest score is considered most likely to implement the same
algorithm as the reference one.

Figure 3 presents the workflow of BinCrypto. It first disassembles the target binary to achieve
the assembly code and control flow graph (CFG) of each function. Then, it captures the static
information of the disassembled code via Preprocessing (§3.2), including loop identification and
parameter recognition. Afterwards, provided with the seed input, which is composed of random

1The emulation of BinCrypto can be started from any program point with arbitrary inputs. It disregards the path constraints
and covers 𝑆3 by force, taking the program state after 𝑆1 as the input.

2Due to the inheritance of the state from 𝑆1, the actual processed nodes are 𝑆3, 𝑆4, and 𝑆5 in this round.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:7

BIN
101100
010011

Target Binary File

Preprocessing
(§3.2)

Loop Identification

Parameter Recognition

Similarity
Measurement

(§3.4)

Code
Emulation
(§3.3)

Reference Code FeaturesSeed Input

LOGAssembly Code

Control Flow Graph

Static Information Code Features

(§3.1)

Function Pairs
with Similarity Scores

Fig. 3. System Overview of BinCrypto

values generated beforehand, BinCrypto performs Code Emulation (§3.3) on the CFG of each
function along with the static information to extract its Code Features (§3.1). At last, The features
are compared to those of the reference cryptographic functions, which are also derived with the
same seed input, to compute similarity scores, i.e., Similarity Measurement (§3.4).

3 Design

In this section, we first introduce the code features adopted by BinCrypto. Then, we explain how
it extracts and processes the features in detail.

3.1 Code Features

Input and output values reflect code behaviors, which are effective features for cryptographic
function identification [Calvet et al. 2012; Li et al. 2012]. BinCrypto then collects the following
emulated input and output values as code features.
1) Input Values. For a binary function, in addition to the arguments, its input values derive

from the following sources [Zhang and Qian 2018], including:
• Global Variables. Their values are stored in data sections, e.g., .data, .rodata, etc.
• Heap Variables. The values are stored in memory dynamically allocated by library functions,
including malloc, calloc, realloc, etc.
• Return Values of Library Functions. According to calling conventions, a return value is stored
in a specific register of an instruction set architecture, e.g., RAX for an integer on x64.
Additionally, Symbol names of library functions persist in stripped binaries because they
are necessary for resolving external function invocations. Then, symbol names of library
functions invoked during the emulation are also considered as features.

2) Output Values. Output values contain those written as Global and Heap Variables. Return
Value of a user-defined function under analysis is considered as output as well.

3.2 Preprocessing

BinCrypto captures the static information of each binary function, which is essential for later
emulation.

3.2.1 Loop Identification. Since the seed input values are generally illegal for actual execution,
the emulation would be trapped in loops easily. Thus, it is necessary to identify such structures
beforehand to facilitate loop emulation (§3.3). In this step, BinCrypto figures out the back-edges
and entries of a loop.1
Irreducible Loop Analysis. A loop is irreducible if it has multiple entries [Havlak 1997]. It appears
because of the adoption of GOTO in the source code and compiler optimization. The choice of entry
1Back-edge is an edge that points to a block that has already been met during a depth-first traversal of the control flow
graph. The destination block is a loop entry [Havlak 1997].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

81:8 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

a

e

d

cb

start

end

(a)

start

end

𝛼

𝛽 𝛾

(b)

entry:
xor rbp, rbp

latch:
add ebp, 40h
add r12, 8
cmp ebp, 100h
jnz entry

...

(c)

Fig. 4. Samples of Irreducible and Regular Loops

could be arbitrary based on the depth-first traversal order on the control flow graph (CFG) [Sreedhar
et al. 1996; Unger and Mueller 2002]. For example, in Figure 4a, 𝐿 = {c, d, e} is an irreducible loop.
Node c is considered as the entry if the depth-first traversal path is 𝑎 ⇀ 𝑐 ⇀ 𝑑 ⇀ 𝑒 then 𝑎 ⇀ 𝑏. By
contrast, Node d is the entry if the path is 𝑎 ⇀ 𝑏 ⇀ 𝑑 ⇀ 𝑒 ⇀ 𝑐 .

BinCrypto chooses the node that has a shorter (longer) distance to the start (end) node in
the CFG as the entry of an irreducible loop. The distance between two nodes is the number of
edges in the shortest path connecting them [West et al. 2001]. In Figure 4a, Node c is chosen as the
loop entry, because it is closer to the start node than d. If the entries share the same distance to
the start node, BinCrypto checks their distances to the end node next. As depicted in Figure 4b,
Node 𝛾 is then chosen as the entry instead of 𝛽 , because it is farther away from end. In the worst
case, if there is an edge from 𝛾 to end in Figure 4b, BinCrypto then treats 𝛽 and 𝛾 both as entries
of the loop.
Regular Loop Detection. A loop is regular if it is iterated with a fixed number of times [Wolfe
et al. 1995]. With the definite number of iterations, a regular loop provides a good chance for code
optimization, such as loop unrolling. BinCrypto identifies regular loops such that it is able to
process them in a different way from irregular ones in the next stage. Since heuristics are hardly
avoidable for reverse engineering [Lin and Gao 2021; Liu et al. 2023; Wang et al. 2017, 2015],
BinCrypto leverages the pattern of operations to achieve the goal. A loop is inferred to be regular
if it is found that the source block of the loop back-edge contains a variable: i) which is increased
or decreased by a constant value; and ii) then is compared to another constant, deciding the jump
target next. For example, Figure 4c presents a regular loop with the loop body omitted. In the source
block of its back-edge (latch), the variable ebp is firstly increased by 0x40. Then, it is compared
with 0x100, to decide if jumping back to the entry. Thus, that is a regular loop with 4 iterations.

3.2.2 Parameter Recognition. Argument values constitute the critical component of input. Since
modern 64-bit instruction set architectures are commonly rich in registers, they pass function
arguments via specific registers as well as stack if those registers are used up. Thus, to guarantee
the same input for emulation, it is necessary to recognize parameters in order to facilitate argument
assignment afterwards (§3.3.3 and Line 2-3 in Algorithm 3).

BinCrypto traverses the function CFG in a depth-first manner, recognizing the registers and
stack variables as function parameters if they are used before defined. The process is presented
in Algorithm 1. For a candidate parameter 𝑎𝑐 , i.e., either stored in a parameter register or in
the parameter area in the stack frame, BinCrypto considers it to be used if it participates in
computing the output. Specifically, if a variable itself or another one, which depends on it, is

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:9

Algorithm 1: Used Parameter Recognition
Input: Control Flow Graph of the Function G
Input: Set of Candidate Parameters of the Function A
Output: Used Argument Set S

1 Algorithm RecognizeUsedParameter (G, A)
2 foreach candidate parameter 𝑎𝑐 ∈ A do
3 foreach node 𝑛 in G do
4 foreach instruction 𝑖 in 𝑛 do
5 if 𝑖 performs local data movement then continue
6 if any variable accessed by 𝑖 depends on 𝑎𝑐 then
7 add 𝑎𝑐 to S
8 else if 𝑖 calls a subroutine 𝑟 then
9 𝑠 ← RecognizeUsedParameter (𝐺𝑟 , 𝐴𝑟)

10 if ∃𝑎𝑟 ∈ 𝑠 depends on 𝑎𝑐 then add 𝑎𝑐 to S

11 return S

accessed by an instruction (e.g., memory accessing, arithmetic or logic computation, etc.), the
variable is considered to be used (Line 6-7). Local data movement operations is excluded (Line 5)
because the operation does not compute the output directly [Cho et al. 2019]. On the other hand, a
variable is used if its value is passed as an argument of the subroutine, which is invoked by the
current function (Line 8-10).
Besides, since the factors involved in cryptographic algorithms are determined by the specific

algorithm (e.g., plaintext, ciphertext, keys, nonces, etc.), the probability is low to implement them
with variadic functions in practice.1 Thus, BinCrypto finds variadic functions during parameter
recognition to exclude them for similarity analysis, which improves the efficiency. The recognition
is performed based on the patterns of argument management for the specific architecture. According
to System V AMD64 ABI [Lu et al. 2018], to access arguments in a variadic list, all the arguments
passed by registers should be pushed onto the stack, including the floating-point (FP) ones. Another
two variables are specified on the stack to indicate the stack location of the start of the register
saved area (reg_save_area) and the first argument passed on the stack (overflow_reg_area). In
practice, due to code optimization, a compiler might discard the movement of FP arguments if it
ensures that the function cannot have such type of parameters. Thus, there is only code to process
integer register arguments and initialize reg_save_area along with overflow_reg_area. Based on
such patterns, BinCrypto is able to detect variadic functions.

3.3 Code Emulation

In this section, we first introduce the language adopted to facilitate the explanation of the method.
Then, we demonstrate how BinCrypto emulates the instructions of the language and manipulates
the control flow accordingly.

3.3.1 Language. For clarity, we adopt a C-like language to describe the function under emulation,
as presented in Figure 5. A binary function is composed of a sequence of instructions, which
generally could be classified into three categories in terms of the functionality: i) data movement
instructions copy data items between registers and memory locations; ii) arithmetic and logic

1In our datasets (§5.1.1), no standard cryptographic algorithms are found to be implemented with variadic functions.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

81:10 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

Function F := I
Instruction I := 𝑟1 ← 𝑟2 assign

| 𝑟1 ← 𝑟2 ⊕ 𝑟3 arithmetic
| 𝑟1 ← 𝑟2 ⊗ 𝑟3 logic
| 𝑟1 ← 𝑟2 ⊖ 𝑟3 comparison
| 𝑟1 ← J𝑟2K read
| J𝑟1K← 𝑟2 write
| I1; I2 sequence

⊕ ∈ {+,-,*,. . .} ⊗ ∈ {&,|,ˆ,. . .} ⊖ ∈ {<,=,>,. . .}

Fig. 5. Syntax of the Language

S(𝑟2) = [𝑙2,𝑢2] Assign
S ⊢ 𝑟1 ← 𝑟2 : S ∪ { (𝑟1, S(𝑟2) }

S ⊢ 𝐼1 : S1 S1 ⊢ 𝐼2 : S2 Sequence
S ⊢ 𝐼1; 𝐼2 : S2

address 𝑟1 S(𝑟2) = [𝑙2,𝑢2]
Write

S ⊢ J𝑟1K← 𝑟2 : S ∪ { (J𝑟1KS, S(𝑟2) }

S(𝑟2) = [𝑙2,𝑢2]
BitwiseNot

S ⊢ 𝑟1 ← ¬𝑟2 : S ∪ { (𝑟1, [¬𝑢2,¬𝑙2]) }

address 𝑟2 random value 𝑟𝑣
Read

S ⊢ 𝑟1 ← J𝑟2K :
{
S ∪ { (𝑟1, 𝑟𝑣), (J𝑟2KS, 𝑟𝑣) } if 𝑟2 not in S
S ∪ { (𝑟1, J𝑟2KS) } otherwise

operand 𝑟2 operand 𝑟3
BitwiseOr

S ⊢ 𝑟1 ← 𝑟2 | 𝑟3 : S ∪ { (𝑟1, [⌊𝑟2 |𝑟3 ⌋, ⌈𝑟2 |𝑟3 ⌉]) }
S(𝑟2) = [𝑙2,𝑢2] S(𝑟3) = [𝑙3,𝑢3]

Add/Mul
S ⊢ 𝑟1 ← 𝑟2 ⊕ 𝑟3 : S ∪ { (𝑟1, [𝑙2 ⊕ 𝑙3,𝑢2 ⊕ 𝑢3]) }

S(𝑟2) = [𝑙2,𝑢2] S(𝑟3) = [𝑙3,𝑢3] Less/LessOrEqual

S ⊢ 𝑟1 ← 𝑟2 ⊖ 𝑟3 :
{
S ∪ { (𝑟1, True) } if 𝑙2 +𝑢2 ⊖ 𝑙3 +𝑢3
S ∪ { (𝑟1, False) } otherwise

Interval 𝑡 = [𝑙, 𝑢] = {𝑣 | 𝑙 ≤ 𝑣 ≤ 𝑢, where 𝑣, 𝑙,𝑢 ∈ 𝑍 }

Fig. 6. Rules for instruction emulation with intervals. S represents the emulated program state mapping a

variable to its interval. J·KS means memory accessing from S. ⌊·|·⌋ and ⌈·|·⌉ computes lower and upper bound

values for BitwiseOr.

instructions implement the computation of binary code; iii) control flow instructions manipulate
the control flow during code execution.

The language contains assignments, memory reading, and writing for data movement. Arithmetic
and logic operations are covered as well. The control flow instructions primarily consist of condi-
tional comparisons, function calls and returns, and explicit/implicit jumps. Comparison operations
are involved in the language, which are the basis for implementing branches and loops in addition
to their normal use. Jumps are simple just for control flow transferring, which are then omitted
for discussion simplicity. Function call and return instructions essentially are jumps with data
movement between the caller and callee. Since BinCrypto is inter-procedural, the two instructions
are also omitted. Note that the language is adopted to demonstrate how BinCrypto performs
code emulation on intervals to overcome the challenges described in Section 2.3. It abstracts away
other common operations, such as unary instructions, which can be handled straightforwardly in
practice.

3.3.2 Instruction Emulation on Intervals. Figure 6 presents the inference rules for emulating instruc-
tions specified in the language. Each rule updates the emulated program state S : 𝑟 ↦→ [𝑙, 𝑢], which
maps a variable to its interval. The variables above the horizontal line constitute the preliminaries
of the rule. Those under the line depict the program states before and after emulating the given
instruction I, denoted as S ⊢ I : S′.
Data Movement. The assignment and write rules are straightforward, which update the variable
values accordingly. The emulation of memory reading might cause errors, because the seed input
values are generally illegal values for actual execution, e.g., reading the memory pointed by the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:11

Algorithm 2: Bounds Computation for BitwiseOr
Input: Lower and Upper Bounds of the 1st Interval 𝑙1, 𝑢1
Input: Lower and Upper Bounds of the 2nd Interval 𝑙2, 𝑢2
Output: Lower and Upper Bounds of the BitwiseOr Result

1 Algorithm ComputeLowerBound (𝑙1, 𝑢1, 𝑙2, 𝑢2)
2 𝑚𝑎𝑠𝑘 ← 1 ≪ max(𝑙1’s bit number, 𝑙2’s bit number)
3 𝑙 ← 𝑙1 ˆ 𝑙2
4 while𝑚𝑎𝑠𝑘 ≠ 0 do
5 if l &𝑚𝑎𝑠𝑘 ≠ 0 then
6 if 𝑙1 & mask = 0 then
7 𝑡 ← (𝑙1 |𝑚𝑎𝑠𝑘) & (¬𝑚𝑎𝑠𝑘 + 1)
8 if 𝑡 ≤ 𝑢1 then 𝑙1 ← 𝑡 , break

9 else if 𝑙2 & mask = 0 then
10 𝑡 ← (𝑙2 |𝑚𝑎𝑠𝑘) & (¬𝑚𝑎𝑠𝑘 + 1)
11 if 𝑡 ≤ 𝑢2 then 𝑙2 ← 𝑡 , break

12 𝑚𝑎𝑠𝑘 ←𝑚𝑎𝑠𝑘 ≫ 1

13 return 𝑙1 | 𝑙2
14 Algorithm ComputeUpperBound (𝑙1, 𝑢1, 𝑙2, 𝑢2)
15 𝑚𝑎𝑠𝑘 ← 1 ≪ max(𝑢1’s bit number, 𝑢2’s bit number)
16 while𝑚𝑎𝑠𝑘 ≠ 0 do
17 if 𝑢1 & 𝑢2 &𝑚𝑎𝑠𝑘 then
18 𝑡 ← (𝑢1 -𝑚𝑎𝑠𝑘) | (𝑚𝑎𝑠𝑘 − 1)
19 if 𝑡 ≥ 𝑙1 then 𝑢1 ← 𝑡 , break
20 𝑡 ← (𝑢2 -𝑚𝑎𝑠𝑘) | (𝑚𝑎𝑠𝑘 − 1)
21 if 𝑡 ≥ 𝑙2 then 𝑢2 ← 𝑡 , break

22 𝑚𝑎𝑠𝑘 ←𝑚𝑎𝑠𝑘 ≫ 1

23 return 𝑢1 | 𝑢2

argument of value 0xdeadbeef. If the reading address is illegal, i.e., not involved in the program
state S, the memory location is initialized with a random value for returning (𝑟𝑣).
Arithmetic and Logic Computation. The addition and multiplication rules describe how to
process basic arithmetic operations, based on which subtraction and division could be inferred. The
rule of BitwiseNot is easy to understand. For BitwiseOr, given two intervals [𝑎, 𝑏], [𝑥,𝑦], the naive
result of the operation is [max(𝑎, 𝑥), 𝑏 + 𝑦], which introduces imprecision.
Algorithm 2 describes how BinCrypto computes the lower and upper bound of the bitwise or

operation between two intervals. For the two lower bound values 𝑙1 and 𝑙2, ComputeLowerBound1

performs scanning starting from the most significant bit (Line 2), trying to increase them to achieve
the maximum value of the resultant lower bound. At the same position, if the bit values are both
0 or 1, the resultant lower bound would have 0 or 1 at that position as well, and the scanning
continues (Line 12). Otherwise, when the two bit-values are different, assuming 𝑙1 has 0 and 𝑙2
has 1, ComputeLowerBound flips that 0 of 𝑙1 into 1 and unsets all its following bits (Line 7 and 10).
If that value is valid, i.e., still belonging to the interval, 𝑙1 is updated accordingly (denoted as 𝑙 ′1),
and the scanning ends (Line 8 and 11), with 𝑙 ′1 | 𝑙2 giving the result (Line 13). ComputeUpperBound
works in the same way. The difference is that it aims to find the minimum value of the resultant
1Its correctness is shown in the extended version of this paper [Hu et al. 2025].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

81:12 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

𝑏!"𝑏#"𝑏$"𝑏%"𝑏!𝑏#𝑏$𝑏%
𝑢#]1100,0100[𝑙#
𝑢$]0101,1010[𝑙$
𝑢$"10010110𝑙$"

Fig. 7. Bounds Computation for BitwiseOr

upper bound. Thus, when the two bits of 𝑢1 and 𝑢2 are both 1 at the same position, one 1 is flipped
into 0 and the subsequent bits are all set then (Line 18 and 20).

Figure 7 depicts an example of computing the bounds values of BitwiseOr for intervals [2, 3] and
[5, 10], where the values have been represented in binaries. For the lower bound, 𝑙1’s 𝑏2 is different
from 𝑙2’s. However, the change cannot be applied to 𝑙1, because the candidate value of 𝑙 ′1 is 0b0100,
which is greater than 𝑢1. By contrast, 𝑏1 of 𝑙2 could be flipped, generating 𝑙 ′2 as 0b0110. Therefore,
the resultant lower bound is 6 (=0b0010 | 0b0110). For the upper bound, 𝑏′1 of 𝑢2 is found to be valid
for flipping, generating 0b1001 as𝑢′2. Then the resultant upper bound is 11 (=0b0011 | 0b1001). [6, 11]
is tighter than the naive result of [5, 13]. Additionally, the bounds values of BitwiseAnd could be
inferred from BitwiseNot and BitwiseOr according to De Morgan’s laws [Copi et al. 2016]. Then,
those of BitwiseXor are handled based on BitwiseOr and BitwiseAnd.
Sequence and Comparison. The Sequence rule states that the consecutive instructions are
processed in order. The Less and LessOrEqual rule shows that BinCrypto compares two intervals
by checking their average values.1 The > and ≥ relations are transformed into ≤ and < accordingly.
The = and ≠ relations are handled by checking whether the bounds values of two intervals are equal
or not. Comparison is the basis of branching. To achieve complete block coverage, BinCrypto covers
both the True and False branches through path-insensitive emulation (as shown in Figure 2c). The
features of IO values are recorded in a sequence that adheres to the emulation order of instructions.
Guided by the Less and LessOrEqual rule, BinCrypto obtains the outcome of comparing two
intervals to determine the order in which to emulate the two branches next. The details are
described in Section 3.3.3 (Branches).

3.3.3 Control Flow Manipulation. Algorithm 3 shows the processes of BinCrypto to manipulate
the emulated control flow. Given a control flow graph (CFG), it starts from the given start block
and keeps traversing until reaching the given end block, covering all blocks on the paths between
them. If the start block is the entry of a function, which is not invoked by the process, BinCrypto
initializes its arguments with the seed input (Line 2-3).
Function Calls and Jumps. For a library function call, BinCrypto updates the emulated program
state for the memory allocation, e.g., malloc (Line 8-10). Other library functions, which do not
require system support, e.g., memcpy, are emulated based on the current program state according
to their symbol names (Line 11).
Function inlining is a common optimization of modern compilers [Chandramohan et al. 2016].

When a user-defined function is invoked, BinCrypto then tries to infer whether it could be
inlined. If that is the case, BinCrypto steps into the function and performs the emulation recur-
sively (Line 13-15), bridging the gaps between optimized and unoptimized code. Otherwise, for the
sake of efficiency, it only covers one path of the callee to derive the return value (Line 16).

In addition, if the instruction is a jump with an illegal target, e.g., an indirect jump, BinCrypto
just skips it and continues the emulation with the next instruction (Line 17-18). If the instruction

1𝑙2 +𝑢2 ⊖ 𝑙3 +𝑢3 ≡ 1
2 (𝑙2 +𝑢2) ⊖

1
2 (𝑙3 +𝑢3) .

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:13

Algorithm 3: Control Flow Manipulation
Input: Start / End Node on the CFG for Emulation Ns / Ne
Input: Emulated Program State S
Output: Function Code Feature Set F

1 Algorithm Emulate (Ns , Ne , S)
2 if Ns is function 𝑓 ’s entry and 𝑓 is not a callee then
3 initialize 𝑓 ’s arguments with the seed input

4 𝑏 ← 𝑁𝑠

5 while 𝑏 ≠ 𝑁𝑒 do
6 foreach instruction 𝑖 in 𝑏 do
7 if 𝑖 will invoke a library function 𝑓 then
8 if 𝑓 allocates memory𝑚 dynamically then

// e.g., malloc, calloc, and realloc

9 𝑚𝑠𝑡 ← a random value
10 allocate𝑚 in S starting at𝑚𝑠𝑡

11 else 𝑓 is handled according to its symbol name
12 else if 𝑖 will invoke a callee 𝑐 then

// inline 𝑐 for more code features
13 if 𝑐 could be inlined then
14 𝑐𝑠 , 𝑐𝑒 ← GetStartEndBlock (𝑐)
15 F ← F ∪ Emulate (𝑐𝑠 , 𝑐𝑒 , S)
16 else F ← F ∪ EmulateSinglePath (𝑐 , S)
17 else if 𝑖 is a jump with illegal target then
18 continue
19 else F ← F ∪ EmulateInstruction (𝑖 , S)

20 if 𝑏 is the entry of a loop 𝑙 then
21 𝑘 ← the number of times to unroll a loop
22 F ← F ∪ EmulateLoop (𝑙 , 𝑘 , S)
23 else if 𝑏 has multiple successors then
24 Co ← S
25 𝑖𝑝𝑑𝑜𝑚 ← GetImmediatePostDominator (𝑏)
26 foreach successor 𝑠 of 𝑏 with specific order do
27 Ct ← Co
28 F ← F ∪ Emulate (𝑠 , 𝑖𝑝𝑑𝑜𝑚, Ct)

// merge program states for branches or switches
29 S ← S ⊔ Ct

30 𝑏 ← GetNextUncoveredBlock ()

31 return F

is control-flow irrelevant, it then handles the instruction according to the rules and updates the
program state accordingly (Line 19).
Loops. If the current block is the entry of a loop, the emulation is considered to be in a loop
structure (Line 20). BinCrypto unrolls the loop for a pre-defined number of times to cover all the
code blocks [Biere et al. 1999]. Note that, for a regular loop with fixed number of iterations (§3.2),
BinCrypto unrolls it for that number to better uncover its behaviors (Line 21-22).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

81:14 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

Table 1. Example of LCS table for interval-based sequence similarity measurement. Items of the same color

are aligned. The number in each cell represents the LCS length of the interval sequences.

Y

X
𝜖 [0, 3] [5, 6] [1, 8]

𝜖 0 0 0 0
[2, 5] 0 1/3 1/3 1/2
[0, 1] 0 1/2 1/2 1/2
[3, 7] 0 1/2 9/10 9/8

Branches. In addition to the source block of a loop back-edge, a basic block can have multiple
successors because it ends with a conditional jump or it dispatches the control flow to implement a
switch structure. BinCrypto first finds the immediate post-dominator (ipdom) of the block with
multiple successors (Line 25). Then, it performs the emulation from each successor block to the
ipdom, and merges the program states to process the following block (Line 28-29).

The successors are enumerated in a specific order such that the feature sequences collected from
equivalent code follow the same order. For a conditional branch, BinCrypto unifies the comparison
into its equivalent form. Specifically, it transforms Greater than (>) into Less than or Equal to (≤),
Greater than or Equal to (≥) into Less than (<), and Not Equal to (≠) into Equal to (=). After that,
it emulates the True branch then the False branch in order. For a switch structure, BinCrypto
would process each case with the same order as that in the jump table. As a result, BinCrypto
processes each block only once, achieving the complete block coverage efficiently.

3.4 Similarity Measurement

During the emulation, BinCrypto records the emulated IO values to form a feature sequence
for each target function,1 which is then compared to those of the reference functions. Given two
sequences of code features 𝑋 , 𝑌 , their similarity score is calculated with the Jaccard Index:

𝑆𝑐𝑜𝑟𝑒 = J(𝑋, 𝑌) = |𝑋 ∩ 𝑌 ||𝑋 ∪ 𝑌 | =
|𝑋 ∩ 𝑌 |

|𝑋 | + |𝑌 | − |𝑋 ∩ 𝑌 | ,

where 𝑋 ∩ 𝑌 is the longest common subsequence (LCS) of the two sequences. Since the feature
elements are represented with intervals, which also could be treated as sets of integers, BinCrypto
measures the similarity of two intervals with the Jaccard Index as well. Then, based on the conven-
tional algorithm [Wagner and Fischer 1974], it computes the LCS table 𝑇 for sequence 𝑋 [1 . . . 𝑖]
and 𝑌 [1 . . . 𝑗] as follows:

𝑇
𝑗

𝑖
=


0 if 𝑖 = 0 or 𝑗 = 0
max(𝑇 𝑗−1

𝑖−1 + J(𝑋𝑖 , 𝑌𝑗), 𝑇 𝑗

𝑖−1, 𝑇
𝑗−1
𝑖
) if 𝑋𝑖 ∩ 𝑌𝑗 ≠ ∅

max(𝑇 𝑗

𝑖−1, 𝑇
𝑗−1
𝑖
) if 𝑋𝑖 ∩ 𝑌𝑗 = ∅

,

where 𝑋 and 𝑌 are two feature sequences, and 𝑋𝑖 , 𝑌𝑗 means their i-th and j-th element separately,
which are intervals.
Example. Table 1 shows the LCS table to measure the similarity of interval-based sequences. X and
Y has 3 intervals in sequence separately. Their LCS is achieved when X ’s [0, 3] and [1, 8] are aligned
with Y ’s [0, 1] and [3, 7] respectively, where the similarity scores are 0.5 (= 1

2 =
| [0,3]∩[0,1] |
| [0,3]∪[0,1] |) and

1The sequence follows the emulation order of the corresponding instructions which manipulate IO values.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:15

Table 2. Cryptographic Libraries Adopted in the Evaluation

Library Version LoC
Number of Cryptography

Related Functions

GnuTLS 3.8.0 633,991 459
cryptolib 3.4.7 68,782 158
Mbed-TLS 3.4.0 65,529 365
wolfSSL 5.6.3 97,949 365
Libgcrypt 1.8.10 30,483 339
Nettle 3.9.1 15,504 988

libfreeblpriv31 3.92 14,500 414
LibreSSL 3.7.3 22,280 1,041
libcrypto2 1.1.1f 16,670 960

1 component of NSS to handle cryptographic operations
2 component of OpenSSL to provide cryptographic functions

0.625 (= 5
8 =

| [1,8]∩[3,7] |
| [1,8]∪[3,7] |). Then, the LCS length of X and Y, i.e., |𝑋 ∩ 𝑌 |, is 1.125 (= 9

8 = 0.5 + 0.625),
and |𝑋 ∪ 𝑌 | is 4.875 (= 3 + 3 − 1.125). As a result, the similarity score of 𝑋 and 𝑌 is 0.231 (= 1.125

4.875).

4 Implementation

The prototype of BinCrypto supports binary cryptographic function identification for ELF files
with x64 instruction set architecture on the Linux platform. It adopts IDA Pro [Hex-rays 2024]
to perform disassembling. Based on IDAPython, about 3,600 lines of Python code is developed to
automate preprocessing (§3.2). The emulation is built based on QEMU [Bellard 2005] with around
15,000 lines of C/C++ code to enable path-insensitive traversal (§3.3). IDA Pro and QEMU are adopted
due to their widespread utilization and sophisticated support for research. While the two tools are
not perfect [Flores-Montoya and Schulte 2020; Miller et al. 2019; Quynh and Vu 2015; Zhang et al.
2021], they are adequate for the prototype to demonstrate the effectiveness of BinCrypto. The
inlining inference adopts the idea of selective inlining [Chandramohan et al. 2016; Xue et al. 2018].
Regular loops with fixed number of iterations are unrolled for that number (§3.2), while others are
unrolled once.

5 Evaluation

In this section, we conduct empirical experiments to evaluate the effectiveness and capacity of
BinCrypto with the following research questions (RQs):

• RQ1: What is its performance in identifying cryptographic functions in real-world libraries
generated with diverse compilation settings (§5.2)?
• RQ2: How does it compare to the state of the art (§5.3)?
• RQ3: How useful is it in real-world applications (§5.4)?

5.1 Experiment Setup

The evaluation is performed on the server with the Intel(R) Xeon(R) 8362 CPU at 2.80GHz, 256G
memory, 1 Nvidia GeForce RTX 3080 Ti GPU for evaluating machine-learning-based baselines, and
Ubuntu 22.04.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

81:16 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

5.1.1 Datasets. We adopt nine real-world cryptographic libraries as objects, as listed in Table 2,
with the lines of source code (LoC) and average numbers of cryptography-relevant functions in
the compiled binaries. Those functions are captured by checking the keywords of forty known
algorithms in function names, including AES, RSA, SM4, MD5, etc., in a case-insensitive man-
ner [Hu et al. 2025]. These libraries are compiled with different compilers, including GCC v11.4.0,
Clang v15.0.3, and ICX v2023.1.0, and diverse optimization options, i.e., O0, O1, O2, and O3. Then,
the generated binaries are utilized for the comprehensive analysis of BinCrypto’s accuracy, dis-
cernment, and efficiency. For the obfuscation experiment, without losing the generality, libcrypto
is adopted as the target, because it serves the cryptographic component of OpenSSL, providing
typical implementations of various standard algorithms. The binaries are obfuscated with the
three widely used techniques provided by Obfuscator-LLVM (OLLVM) [Junod et al. 2015], including
instruction substitution, bogus control flow, and control flow flattening.
Additionally, four common programs, Curl, Nginx, OpenVPN, and PostgreSQL, which employ

cryptographic libraries to guarantee security, are utilized to check whether BinCrypto is capable
of identifying statically-linked cryptographic functions. We also collect eight real-world samples
from various ransomware families to further demonstrate the capability of BinCrypto in mal-
ware analysis, including BlackSuit, DarkAngles, Erebus, LockBit, Monti, REvil, RansomEXX, and
Royal.

5.1.2 Ground Truth and Metrics. All the binaries for the evaluation are stripped. To verify the
correctness of the results, for samples with source code, we compile their extra unstripped copies,
adopting the symbols information as the ground truth. For others, we verify the results manually.
In our scenario, target functions are those under analysis, consisting of both cryptographic

related as well as unrelated functions. We aim to evaluate the ability of BinCrypto to correctly
identify the cryptographic-related functions among the target ones. BinCrypto compares each
target function to all the reference cryptographic functions to calculate similarity scores in pairs.
The match is considered to be correct if the reference, which scores the highest, shares the same
name or implements the same algorithm with the target function. Then, we adopt Recall@1 to
evaluate the accuracy, which means the ratio of target cryptographic-related functions that achieve
the correct match [Chandramohan et al. 2016; Feng et al. 2017; Marcelli et al. 2022; Wang and Wu
2017; Xu et al. 2023a,b]. The formula is as follows:

𝑅𝑒𝑐𝑎𝑙𝑙@1 =
|{𝑡 ∈ 𝑇𝑐 | 𝑛𝑡 ∈ 𝑁𝑟 }|

|𝑇𝑐 |
, (1)

where 𝑇𝑐 is the set of target cryptographic-related functions, 𝑛𝑡 is the symbol name of the function
𝑡 , and 𝑁𝑟 is the symbol name set of the reference functions with the highest score.

Besides, since there might be samples with equal similarity scores, i.e., |𝑁𝑟 | > 1 in Equitation 1,
we employ the SingleMatch Ratio to evaluate the discernment of a method, similar to the previous
work [Zhou et al. 2024]. The formula is as follows:

𝑆𝑖𝑛𝑔𝑙𝑒 𝑀𝑎𝑡𝑐ℎ 𝑅𝑎𝑡𝑖𝑜 =
|{𝑡 ∈ 𝑇𝑐 | 𝑛𝑡 ∈ 𝑁𝑟 ∧ |𝑁𝑟 | = 1}|

|{𝑡 ∈ 𝑇𝑐 | 𝑛𝑡 ∈ 𝑁𝑟 }|
. (2)

5.1.3 Baseline Methods. We adopt WheresCrypto [Meijer et al. 2021], FindCrypt2 [Guilfanov
2006], Signsrch [Auriemma 2016], Yara4Ida [Weatherman 2022], jTrans [Wang et al. 2022], and
Hermes [He et al. 2024b] as the baselines. WheresCrypto is the state-of-the-art method for binary
cryptographic function identification. Provided with reference implementations, it achieves the goal
by measuring the similarity of data flow graphs between the targets and references. FindCrypt2,
Signsrch, and Yara4Ida are tools based on pre-defined heuristic patterns.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:17

Table 3. Accuracy and discernment of BinCrypto. The three rows of the table header represent the

configuration of the experiments, the compilation settings of the references, and that of the target functions,

respectively. The two sub-columns of each pair of analysis list the values of Recall@1 and Single Match Ratio.

We failed to compile libfreeblpriv3 with Clang-O3 and ICX-O3.

Library
Cross-optimization Cross-compiler Cross-both

GCC-O0 Clang-O0 ICX-O0 GCC-O3 GCC-O0
GCC-O3 Clang-O3 ICX-O3 Clang-O3 ICX-O3 Clang-O3 ICX-O3

GnuTLS .797 .679 .776 .720 .785 .727 .861 .673 .858 .672 .778 .695 .790 .700
cryptolib .722 .877 .734 .940 .694 .956 .899 .873 .840 .973 .730 .912 .719 .899
Mbed-TLS .669 .647 .664 .544 .624 .554 .762 .634 .661 .664 .666 .618 .600 .641
wolfSSL .604 .762 .561 .759 .536 .783 .678 .763 .646 .772 .575 .730 .556 .741
Libgcrypt .674 .723 .667 .684 .680 .697 .762 .812 .735 .797 .602 .777 .629 .795
Nettle .818 .702 .870 .748 .837 .724 .750 .745 .687 .746 .721 .751 .705 .733

libfreeblpriv3 .636 .844 - - - - - - - - - - - -
LibreSSL .763 .681 .782 .672 .741 .688 .689 .715 .779 .717 .721 .686 .757 .688
libcrypto .840 .733 .846 .734 .822 .715 .830 .724 .857 .742 .779 .719 .813 .733

Average .742 .702 .753 .686 .726 .684 .766 .696 .766 .705 .712 .683 .704 .690

jTrans and Hermes are selected because they are generic and state-of-the-art machine-learning-
based methods for function similarity analysis, which support code identification as well. They are
based on the Transformer architecture [Vaswani et al. 2017] and GNN [Li et al. 2015], respectively.
The two methods are trained and fine-tuned using their provided datasets, which contains the
cryptographic binaries, e.g., OpenSSL. We use the baseline methods to complete the same analysis
tasks for the comparison. Although WheresCrypto is designed for ARM architecture, its core
technique, data flow graph isomorphism, is platform independent, as is BinCrypto. We then
compile the libraries in Table 2 into ARM binaries for WheresCrypto in order to perform the
comparison.

BinCrypto and the baselines above are all methods without actual execution. It is unfair to
directly compare them to the dynamic methods, such as CryptoHunt [Xu et al. 2017b], which
have their own inherent limitations. That would be discussed in Section 6.4.

5.2 RQ1: Performance

In this section, BinCrypto is evaluated to show its accuracy, discernment (§5.2.1), and effi-
ciency (§5.2.2). Three sets of experiments are conducted with diverse configurations: i) cross-op-
timization, with reference and target functions compiled with different optimization levels but
the same compiler; ii) cross-compiler, with the functions compiled with different compilers but the
same optimization; and iii) cross-both, with both different compilers and optimization levels. The
reference and target binaries are compiled from the same codebase.

5.2.1 Accuracy and Discernment. The results are listed in Table 3. For experiments with different
optimizations, it only contains those between O3 and O0, which has the most significant differences
in binaries [Hu et al. 2021].

Overall, for cross-optimization analysis in the table, BinCrypto achieves 74.1% of Recall@1 and
69.1% of Single Match Ratio on average, and the values of cross-compiler analysis are 76.6% and
70.0%, indicating that optimizations pose more difficulties for the identification. When the results

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

81:18 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

Table 4. Results compared with existing work. The reference code is compiled with GCC-O0. The first

sub-column of each method lists the values of Recall@1. The second sub-column (if it exists) lists those of

Single Match Ratio.

Target BinCrypto WheresCrypto1 FindCrypt2 Signsrch Yara4Ida jTrans Hermes

GCC-O3 .745 .683 .487 .497 .079 1.000 .295 1.000 .392 1.000 .500 .552 .248 .992
Clang-O3 .712 .683 .342 .633 .086 1.000 .314 1.000 .411 1.000 .432 .508 .136 1.000
Clang-O0 .904 .709 .416 .519 .093 1.000 .287 1.000 .378 1.000 .620 .540 .535 1.000

Average .796 .693 .409 .549 .087 1.000 .298 1.000 .393 1.000 .526 .535 .309 .998
Time / Function 2.817s 6.695s < 0.001s < 0.001s < 0.001s 0.002s 0.003s
1 inline depth 𝑑 = 4, the depth level to inline subroutines

of all the experimental configurations are involved, the average Recall@1 and Single Match Ratio
are 84.5% and 73.3% for cross-optimization, 86.3% and 74.0% for cross-compiler, 71.4% and 71.5% for
cross-both analysis, and 83.2% and 73.3% for all the sets of experiments [Hu et al. 2025].
By investigating the results, we find that the incorrectness primarily stems from two reasons.

One is function inlining, which is a vital optimization adopted in modern compilers [Chen et al.
1993]. It replaces the call site in a caller with the callee to pursue better time performance. The
code features collected by BinCrypto are fused accordingly. Different compilers also adopt diverse
heuristics to decide whether to perform inlining [Theodoridis et al. 2022]. BinCrypto fails to infer
if an invoked function, including library functions (e.g., memcpy), could be inlined in all cases, even
though selective inlining [Chandramohan et al. 2016] is adopted. Then, it is highly possible for
BinCrypto to miss the match, if one function has inlined code, whereas its counterpart does not.
The other is the varying granularities of memory access. Binary code accesses memory

with multiple granularities, i.e., bytes, words, double-words, or quad-words. When processing a
large amount of data, multi-byte accessing is more efficient than single-byte accessing. Therefore,
cryptographic functions would be optimized to access data in multiple bytes at a time rather than a
single byte. That leads to the mismatching, because BinCrypto fails to align features of different
granularities.

5.2.2 Efficiency. Similarity measurement is the most time-consuming component of BinCrypto,
which employs the LCS algorithm with the time complexity of𝑂 (𝑚𝑛). Although it takes more time
as the feature sequences become longer, BinCrypto processes each basic block only once, balancing
analysis efficiency and accuracy/discernment. As a result, in the experiments, the analysis of Nettle
is completed in the least amount of time, i.e., 105.756s (0.183s / Function), and LibreSSL costs
11.31h (8.272s / Function), the most amount of time in the experiments. On average, BinCrypto
takes 3.081s to process one function. Similarity measurement accounts for 95.3% of the processing
time, i.e., 2.936s, while preprocessing and code emulation occupy 1.0% and 3.7% of the time separately.

Answer to RQ1: BinCrypto achieves the average Recall@1 of 83.2% and Single Match Ratio
of 73.3% for all the experiments. The incorrectness is mainly caused by function inlining and
varying granularities of memory access. It spends 3.081s processing one function on average,
where similarity measurement accounts for most of the time, i.e., 95.3%.

5.3 RQ2: Comparison with Existing Work

In this section, BinCrypto is compared to the baseline work. The results are listed in Table 4, where
the reference code is compiled with GCC-O0.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:19

5.3.1 WheresCrypto. WheresCrypto is the state-of-the-art method depending on data flow
graph isomorphism between the reference and target functions. It defines a parameter of inline
depth (𝑑), which denotes the depth of subroutines that are inlined [Meijer et al. 2021]. We choose the
setting of 𝑑 = 4 in this section, the same as that adopted in the original paper. BinCrypto achieves
better performance from the perspectives of accuracy, discernment, and efficiency. The input and
output features it adopts are more robust than data flow graph structures across code transformation
caused by compiler optimization. Path-insensitive emulation along with LCS computation is also
faster than graph isomorphism analysis which belongs to NP [Babai 2016].

5.3.2 FindCrypt2, Signsrch, and Yara4Ida. The three methods identify cryptographic functions
with heuristic patterns. Specifically, FindCrypt2 relies on the specified constants of cryptographic
algorithms, such as the S-boxes of symmetric ciphers, initialization vector values of hash functions,
etc. Signsrch further attempts to search for keyword strings of those algorithms in binaries, based
on which Yara4Ida optimizes the searching patterns to improve the performance. Their Recall@1
values are much lower than BinCrypto, because heuristics can only cover limited cases. Their
values of Single Match Ratio are all 100.0% due to the nature of heuristics-based patterns which are
stringent. Namely, when a pattern is matched, there is a high likelihood that it is correct.

5.3.3 jTrans and Hermes. jTrans is based on machine-learning techniques to generally detect
binary similar functions. With the Transformer architecture, it attaches more attention to control
flow information by embedding the source and destination of a jump instruction [Wang et al. 2022].
The model is fine-tuned with its official dataset BinaryCorp [Wang et al. 2024b] which contains
binaries of cryptographic libraries, i.e.,OpenSSL. Hermes adopts GGNN [Li et al. 2015] to embed the
control flow graph along with data dependence information and function calling information [He
et al. 2024b]. By default, it is trained with the dataset proposed byMarcelli et al. [Marcelli et al. 2022],
which also contains OpenSSL. The test datasets in our evaluation are composed of cryptographic
functions, which involves numerous arithmetic and logic operations. The long-range relationships
between code and variables are common as well. Thus, jTrans achieves higher average Recall@1
than Hermes in this section. BinCrypto outperforms jTrans and Hermes with better accuracy,
because it depends on the behavior information of cryptographic functions rather than the code
graph properties, which are prone to compiler code transformation.

Answer to RQ2: BinCrypto achieves better Single Match Ratio than WheresCrypto and
jTrans and higher Recall@1 than all the baseline methods, because it is more resilient to
code transformation. It is more efficient than WheresCrypto as well due to path-insensitive
emulation.

5.4 RQ3: Applications

In this section, we show the potential practical applications of BinCrypto in the following scenarios:
i) statically-linked library analysis, to detect cryptographic functions statically linked in real-world
programs; ii) cross-library analysis, to identify target functions with references of the same algorithm
but compiled from different codebases; iii) obfuscated code analysis, to analyze binaries with code
obfuscation; iv) malware analysis, to locate the cryptographic functions in a ransomware.

5.4.1 Statically-Linked Library Analysis. Cryptographic libraries are usually statically linked into
other programs to provide encryption and authentication services. It is meaningful to locate the
cryptographic functions in those programs in order to facilitate the downstream security analysis,
e.g., patch analysis [Zhang and Qian 2018]. libcrypto is selected as the reference, because it

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

81:20 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

Table 5. Results of statically-linked library analysis. The references are from libcrypto.

Target
Program

of
Functions

Recall@1
Total

Time (min)

Curl 7,529 31 / 34 9.792
Nginx 8,042 31 / 34 11.135

OpenVPN 9,953 31 / 34 15.428
PostgreSQL 30,541 31 / 34 999.414

0.400

0.500

0.600

0.700

0.800

0.900

0

5

10

15

20

25

GnuTLS

cry
ptol

ib

M
bed

 TLS

wolf
SSL

Libgc
ry

pt
Nett

le

lib
fre

eb
lpriv

3

LibreS
SL

R
at
io

Fu
nc
tio
n
N
um
be
r

#Correct #Relevant Recall@1

Fig. 8. Results of cross library analysis. The references are from libcrypto.

constitutes the cryptographic component of OpenSSL, which is widely utilized in practice. We then
use BinCrypto to find the cryptographic functions in the real-world target programs.

The results are presented in Table 5. The second column lists the number of functions contained
in the target program. The third column shows the values of Recall@1. Note that, in the experiments,
we concentrate on the 34 core functions that implement 19 standard cryptographic algorithms [Hu
et al. 2025], including AES, MD5, RSA, etc. The last column provides the total processing time in
minutes.
Overall, BinCrypto achieves high Recall@1. 31 of the 34 functions are successfully identified

for each program, and 17 have a single correct match. The three incorrect samples are the same for
the four programs, i.e., rsa_ossl_private_encrypt, rsa_ossl_private_decrypt, and sha3_update, which
are caused by function inlining (§5.2.1). It takes more than 15 hours to process PostgreSQL which
has more than thirty thousand functions, and the average time for each function is 1.963s.

5.4.2 Cross-Library Analysis. Cryptographic algorithms could have a variety of implementations.
Typically, the nine libraries in Table 2 provide diverse implementations for the standard algorithms.
Thus, in this section, we show the capability of BinCrypto to identify target functions which
implement the same algorithm but are compiled from different codebases.

Similar to Section 5.4.1, libcrypto is selected as the reference to identify the target functions of
the other eight libraries in Table 2, and we only focus on the 34 core cryptographic functions [Hu
et al. 2025]. Since function symbol names vary across libraries, we verify the correctness of the
analysis manually. The results are depicted in Figure 8. Except for Mbed-TLS, whose Recall@1 is
44.4%, the values of others are all over 60.0%, and the average is 68.3%. Besides, GnuTLS mainly
adopts Nettle as the external library to implement cryptographic operations. Its target function
number then is small in the experiments.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:21

Table 6. Recall@1 of analyzing binaries obfuscated by OLLVM. The targets are from libcrypto.

Obfuscation BinCrypto WheresCrypto1 jTrans Yara4Ida Hermes

SUB .541 .064 .337 .285 .351
BCF .595 .239 .320 .194 .114
FLA .513 .119 .310 .143 .231

Average .550 .141 .323 .204 .224
1 inline depth 𝑑 = 4, the depth level to inline subroutines

In addition to the aforementioned reasons (§5.2.1), variant implementations cause the in-
correctness of cross-library analysis as well. For example, there are more indirect calls in the
binary code of the reference library libcrypto than in other libraries, leading to mismatching
because BinCrypto cannot resolve the invalid emulated target of indirect calls. On the other hand,
libcrypto processes the Rijndael T-tables [Chen 2020; Daemen and Rijmen 1999] in a little-endian
manner, while cryptolib does it in a big-endian manner. As a result, the code features collected
are also in different orders, which lowers the similarity score.

5.4.3 Obfuscated Code Analysis. In this section, we show the capability of BinCrypto in analyzing
binaries with obfuscation. The code is obfuscated by Obfuscator-LLVM (OLLVM) in the experiments.
The results are presented in Table 6 with those of baseline methods attached as well. For the
heuristics-based tools, we only consider Yara4Ida in this section as the reference, because it
achieves better performance than FindCrypt2 and Signsrch in the previous experiments (§5.3,
Table 4). For the machine-learning-based methods, it is a common practice to train them with
benign code and test them with obfuscated code [Ding et al. 2019]. In this section, we adopt jTrans
and Hermes, which have been trained with their default datasets. To clarify, without sacrificing
generality, all functions in target binaries are obfuscated with the default settings of OLLVM to
achieve a comprehensive comparison between different methods. As a result, due to the complete
code coverage for extracting behavior-related features, BinCrypto attains an average Recall@1 of
55.0%, outperforming the baselines. The baselines are vulnerable to code obfuscation, because of
their reliance on the code graph properties, e.g., data flow graphs, control flow information, data
dependence relationships, etc.

OLLVM adopts three widely used obfuscation techniques. Instruction substitution (SUB) replaces
original operators with equivalent but more complicated instructions, confusing the data flow
relationships among variables. Hence, WheresCrypto, which relies on the isomorphism of data
flow graphs, demonstrates the lowest Recall@1 when dealing with SUB (6.4%). Bogus control
flow (BCF) adds opaque predicates to a basic block to break it into two. It creates redundant paths
and complicates control flow graphs. As a result, BCF poses greater threats to jTrans and Hermes
than SUB does, with the resulting Recall@1 of 19.4% and 11.4% respectively, because of their reliance
on the control flow information. Control flow flattening (FLA) breaks up functions into code blocks
and stitches them via a dispatcher structure, e.g., the switch structure. It also complicates the
data/control flow graphs and program dependence relationships. That could be indicated by the
Recall@1 of WheresCrypto, jTrans, and Hermes, which is 11.9%, 14.3%, and 23.1%, separately.

BinCrypto is a static-analysis-based method without actual code execution. The effects of code
obfuscation on it are also unignorable. SUB creates extra I/O operations which are irrelevant to
the original semantics. The redundant paths generated by BCF lead to noisy code features as well.
FLA leverages indirect jumps to implement the selective structures, which pose obstacles for the
emulation to collect code features (§3.3.3). In practice, to maximize the effectiveness of BinCrypto,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

81:22 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

Table 7. Results of cryptographic function identification in ransomware. ✓ means found and ✗ is not found.

Ransomware Algorithm BinCrypto Yara4Ida jTrans Hermes

BlackSuit AES ✓ ✓ ✓ ✗

DarkAngles AES ✓ ✓ ✗ ✗

Erebus
RC4 ✓ ✗ ✓ ✓

RSA ✓ ✗ ✓ ✗

LockBit
Blake2b ✓ ✗ ✓ ✗

ECC ✓ ✗ ✗ ✓

Monti AES ✓ ✓ ✗ ✗

REvil AES ✓ ✓ ✗ ✗

RansomEXX AES ✓ ✗ ✗ ✓

Royal AES ✓ ✓ ✓ ✓

when faced with obfuscated binaries, it would be a better choice to deobfuscate them first for
further analysis [Schloegel et al. 2022; Xu et al. 2018].

5.4.4 Malware Analysis. Malware analysis is one of the typical applications of binary cryptographic
function identification. We then evaluate BinCrypto with real-world ransomware. Among the
eight samples we collect, six of them rely on AES to perform the encryption, including BlackSuit,
DarkAngles, Monti, REvil, RansomEXX, and Royal. Erebus employs RC4 to encrypt files and
the RC4 key is then encrypted by RSA. LockBit adopts a hybrid-cryptography scheme for the
encryption, including Blake2b and ECC.
The results are listed in Table 7. BinCrypto successfully identifies the target cryptographic

functions in the collected ransomware, due to the complete code coverage and the reliance on the
behavior-related code features. By contrast, Yara4Ida is a tool based on heuristic patterns. It fails
to recognize cryptographic implementations when lacking dependable static patterns. For example,
it is able to find AES with S-box in the .rodata section. It fails to locate AES in RansomEXX, because
the S-box is generated dynamically [Singh et al. 2017] instead of stored in the data section statically.
jTrans depends on the control flow information embedded by the Transformer architecture for
code similarity analysis. Hermes employs GNN to embed program dependence relationships as
features in addition to the control flow information. They are unable to accurately locate all the
cryptographic algorithms in the target ransomware, as the features they adopt are susceptible to
code transformation, e.g., optimization and obfuscation.

Answer to RQ3: BinCrypto shows its potential for practical applications, including statically-
linked library analysis, cross-library analysis, obfuscated code analysis, and malware analysis.

6 Discussion and Future Work

6.1 Application Scope

The prototype of BinCrypto is implemented to handle 64-bit ELF files on Linux, while the pro-
posed method is platform-independent. The experimental results demonstrate its effectiveness
and potential applications. With some engineering work, it would be able to handle PE files on
Windows and perform analysis across different instruction set architectures, e.g., ARM, MIPS, etc.
The adoption of QEMU indicates such capability as well.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:23

6.2 Obfuscation

Although BinCrypto is shown to be capable of analyzing obfuscated code generated by
OLLVM (§5.4.3), that does not mean it could handle all kinds of obfuscation. Additionally, BinCrypto
performs much better when processing unobfuscated code (§5.2). Since deobufucation is a well-
established research field [Blazytko et al. 2017; David et al. 2020; Schloegel et al. 2022; Xu et al.
2018; Yadegari et al. 2015], in practice, it is recommended to deobfuscate the obfuscated code first
for further analysis so as to maximize the effectiveness of BinCrypto.

6.3 Function Inlining

Function inlining is the main reason causing the incorrectness (§5.2.1). Selective inlining [Chan-
dramohan et al. 2016] mitigates the problem but does not resolve it. Since the inlining decision is
made mainly based on heuristics [Theodoridis et al. 2022], machine-learning-based solutions might
be effective in inferring whether a callee could be inlined, which is left as future work.

6.4 Comparison with Dynamic Methods

BinCrypto is based on static analysis; it proactively reasons about program behaviors using static
analysis techniques to infer ranges of variable values in a path-insensitive manner. QEMU is
employed as its underlying abstract interpretation engine for the implmentation. This is a key
distinction from dynamic analysis, which relies on concrete executions with various inputs, hoping
to satisfy path constraints by chance. Although the dynamic methods are more resilient to code
obfuscation, they have their own inherent limitations, e.g., code coverage and overhead. It is
difficult to generate input which covers arbitrary code. Taking malware analysis as an example,
if the malicious behaviors or the cryptographic functions only constitute a small portion of a
host program whose primary functionality is benign, static methods might be more suitable for
such cases. Hence, static and dynamic methods both have their own advantages, which could
complement each other for practical applications.
On the other hand, due to the usage of static techniques, BinCrypto is able to achieve more

comprehensive and efficient analysis results. Its efficiency significantly surpasses existing dynamic
methods. On average, BinCrypto analyzes a cryptographic function in just a few seconds. In
contrast, the online trace logging of CryptoHunt [Xu et al. 2017b], a state-of-the-art dynamic
binary cryptographic function identification tool, causes 5-6X slowdown. Furthermore, its offline
analysis takes tens of minutes to locate one target cryptographic function in a binary.

6.5 Proprietary Cryptographic Function Identification

In the literature, cryptographic function identification generally requires oracles, i.e., the reference
implementations, and so does BinCrypto. WheresCrypto loosens the requirement, handling
proprietary cryptographic primitives by recognizing known structures, e.g., Feistel structure, which
unfortunately still suffers from binary code transformation. It tends to underperform in analyzing
even standard cryptographic functions in our experiments (§5.3), which motivates BinCrypto.
Understanding binary proprietary cryptographic algorithm is essential for software security analysis.
It requires to figure out how the key is scheduled and how the plaintext is processed to generate
the ciphertext. We will leave it as future work.

7 Related Work

7.1 Binary Cryptographic Function Detection

The heuristics-based methods rely on the presence of loops, entropy, the ratio of logic operations,
and the avalanche effect [Ramanujam and Karuppiah 2011] to infer if functions are cryptography

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

81:24 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

relevant [Auriemma 2016; Guilfanov 2006; Li et al. 2012; Wang et al. 2009], which cannot cover
all the cases in the real world. Graph-isomorphism-based methods adopt data flow graphs as the
signature to achieve the goal [Lestringant et al. 2015; Meijer et al. 2021]. However, they are still
prone to code transformation of binaries, e.g., compiler optimization. The Input/Output-relation-
based methods then collect input and output values during execution for the identification [Calvet
et al. 2012; Gröbert et al. 2011]. Additionally, CryptoHunt [Xu et al. 2017b] depends on the runtime
values of loops. Unfortunately, these methods depend on dynamic analysis, which are insufficient
for practical use because of the inherent limitations, such as coverage and efficiency issues. By
contrast, BinCrypto relies on code behavior information which is captured via emulation in a
path-insensitive manner, balancing analysis accuracy, efficiency, and code coverage.

7.2 Binary Similarity Analysis

Binary similarity analysis has a lot of important applications in software security. Syntax-
and structure-based methods adopt normalized opcode and operand sequences, control flow
graphs (CFGs), and call graphs as features to measure code similarity [David and Yahav 2014;
Ding et al. 2016; Flake 2004; Sæbjørnsen et al. 2009], which cannot handle code compiled with
different compilation configurations. Symbolic-execution-based methods perform equivalence
checking between code constrains to achieve the goal [Luo et al. 2014, 2017; Zhang et al. 2014],
which suffer from the efficiency issue of solvers. Emulation-based methods emulate code execution
and measure the similarity based on the emulated values [Chandramohan et al. 2016; Eschweiler
et al. 2016; Hu et al. 2017; Pewny et al. 2015; Wang and Wu 2017; Xu et al. 2023b; Xue et al. 2018].
The mainstream emulation and execution-based methods have limitations in terms of code coverage
except BLEX [Egele et al. 2014]. BLEX achieves complete code coverage by executing the target
code repeatedly, starting each time from the uncovered instruction, until all the code is covered
at least once. To avoid state explosion (Figure 2b), it executes uncovered code with brand new
program state, which however disregards the context of execution. It potentially runs equivalent
code with different inputs, which diminishes its analysis accuracy. IMF-sim [Wang and Wu 2017]
and BinMatch [Hu et al. 2021] are dynamic methods with limited code coverage, which undermines
their practicability. ARCTURUS [Zhou et al. 2024] traverses the code under the guidance of reacha-
bility, whose effectiveness is proven on the assumption that two pieces of code for comparison are
compiled from the same codebase. By contrast, because of interval-based path-insensitive code
emulation, BinCrypto would be more practical for achieving complete code coverage efficiently.
Besides, BinCrypto is capable of analyzing code implementing the same algorithm but generated
from different codebases (§5.4.2). It is more aligned with equivalent algorithm analysis than similar
code analysis. More recently, machine learning techniques have also been widely utilized for binary
similarity analysis [Ding et al. 2019; Feng et al. 2016; He et al. 2024b,a; Jiang et al. 2024; Li et al.
2024; Liu et al. 2018; Luo et al. 2023; Pei et al. 2022; Wang et al. 2024a, 2022; Xu et al. 2017a; Yang
et al. 2021; Yu et al. 2020a,b; Zuo et al. 2019]. These methods are robust when the training set is
well constructed, while it remains an open question to extract and embed the precise semantics of
binary code statically [Marcelli et al. 2022; Zhang et al. 2023].

8 Conclusion

We propose BinCrypto to identify cryptographic functions in binaries. It extracts inputs and
outputs as code features via code emulation, and performs path-insensitive analysis to achieve
complete basic block coverage efficiently. The evaluation shows that BinCrypto outperforms the
state-of-the-art methods from the perspective of accuracy and discernment. The experiments also
demonstrate its potential for practical applications.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:25

Data-Availability Statement

The artifact is available on github (https://github.com/yikunh/BinCrypto) and Zenodo [Hu et al.
2025]. To ensure flexibility, it is provided as a Docker image based on Linux, containing the sample
binaries and compiled executables of BinCrypto’s prototype. The samples are presented unstripped
to enhance the readability of the results, while BinCrypto does not rely on the symbol and debug
information in any way. It demonstrates how the method emulates the samples to extract code
features, perform the comparison, and present the results.

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful comments. The
authors would also like to extend special thanks to Xiangzhe Xu from Purdue University for
cross-validating the baseline method. Yituo He and Yizhe Cui successively helped implement and
maintain the prototype. The SJTU authors were partially supported by the National Natural Science
Foundation of China (No. U2336210), Shanghai Pujiang Program (No. 22PJ1405700), and Shanghai
Committee of Science and Technology, China (No.23511101000). The HKUST author is supported
by an NSFC/RGC JRS grant under the contract N_HKUST605/23.

References

Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Moriai, Junko Nakajima, and Toshio Tokita.
2000. Specification of Camellia-a 128-bit block cipher. Specification Version 2 (2000). doi:10.25148/etd.fi14051800

C Ashokkumar, Bholanath Roy, M Bhargav Sri Venkatesh, and Bernard L Menezes. 2018. " S-Box" Implementation of AES is
NOT side-channel resistant. Cryptology ePrint Archive (2018). doi:10.1007/s41635-019-00082-w

Luigi Auriemma. 2016. Signsrch 0.2.4. http://aluigi.altervista.org/mytoolz.htm. Tool searches encryption/compression
algorithms inside files.

László Babai. 2016. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing. 684–697. doi:10.59350/vre69-edk82

Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX annual technical conference, FREENIX Track,
Vol. 41. California, USA, 46. doi:10.1109/csma.2015.14

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Symbolic model checking without BDDs. In
Tools and Algorithms for the Construction and Analysis of Systems: 5th International Conference, TACAS’99 Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS’99 Amsterdam, The Netherlands, March 22–28,
1999 Proceedings 5. Springer, 193–207. doi:10.21236/ada360973

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017. Syntia: Synthesizing the semantics of
obfuscated code. In 26th USENIX Security Symposium (USENIX Security 17). 643–659. doi:10.1109/sere.2012.13

Joan Calvet, José M Fernandez, and Jean-Yves Marion. 2012. Aligot: Cryptographic function identification in obfuscated
binary programs. In Proceedings of the 2012 ACM conference on Computer and communications security. 169–182. doi:10.
1145/2382196.2382217

Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho, and Hee Beng Kuan Tan. 2016. Bingo:
Cross-architecture cross-os binary search. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 678–689. doi:10.1145/2950290.2950350

William Y Chen, Pohua P. Chang, Thomas M Conte, and Wen-mei W. Hwu. 1993. The effect of code expanding optimizations
on instruction cache design. IEEE Trans. Comput. 42, 9 (1993), 1045–1057. doi:10.1109/12.241594

Xiaoqi Chen. 2020. Implementing AES encryption on programmable switches via scrambled lookup tables. In Proceedings of
the Workshop on Secure Programmable Network Infrastructure. 8–14. doi:10.1145/3405669.3405819

Mingi Cho, Seoyoung Kim, and Taekyoung Kwon. 2019. Intriguer: Field-level constraint solving for hybrid fuzzing. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 515–530. doi:10.1145/3319535.
3354249

Irving M Copi, Carl Cohen, and Kenneth McMahon. 2016. Introduction to logic. Routledge. doi:10.4324/9780203204887_
chapter_10

Joan Daemen and Vincent Rijmen. 1999. AES proposal: Rijndael. (1999). doi:10.1007/springerreference_461
S Das, JKMS Uz Zaman, and RJPT Ghosh. 2013. Generation of AES S-Boxes with various modulus and additive constant

polynomials and testing their randomization. Procedia Technology 10 (2013), 957–962. doi:10.1016/j.protcy.2013.12.443

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

https://github.com/yikunh/BinCrypto
https://doi.org/10.25148/etd.fi14051800
https://doi.org/10.1007/s41635-019-00082-w
http://aluigi.altervista.org/mytoolz.htm
https://doi.org/10.59350/vre69-edk82
https://doi.org/10.1109/csma.2015.14
https://doi.org/10.21236/ada360973
https://doi.org/10.1109/sere.2012.13
https://doi.org/10.1145/2382196.2382217
https://doi.org/10.1145/2382196.2382217
https://doi.org/10.1145/2950290.2950350
https://doi.org/10.1109/12.241594
https://doi.org/10.1145/3405669.3405819
https://doi.org/10.1145/3319535.3354249
https://doi.org/10.1145/3319535.3354249
https://doi.org/10.4324/9780203204887_chapter_10
https://doi.org/10.4324/9780203204887_chapter_10
https://doi.org/10.1007/springerreference_461
https://doi.org/10.1016/j.protcy.2013.12.443

81:26 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

Robin David, Luigi Coniglio, and Mariano Ceccato. 2020. Qsynth-a program synthesis based approach for binary code
deobfuscation. In BAR 2020 Workshop. doi:10.14722/bar.2020.23009

Yaniv David and Eran Yahav. 2014. Tracelet-based code search in executables. Acm Sigplan Notices 49, 6 (2014), 349–360.
doi:10.1145/2594291.2594343

Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2016. Kam1n0: Mapreduce-based assembly clone search for
reverse engineering. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining. 461–470. doi:10.1145/2939672.2939719

Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019. Asm2vec: Boosting static representation robustness for
binary clone search against code obfuscation and compiler optimization. In 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 472–489. doi:10.1109/sp.2019.00003

Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket execution: Dynamic similarity testing for
program binaries and components. In 23rd USENIX Security Symposium (USENIX Security 14). 303–317. doi:10.2172/5154317

Sebastian Eschweiler, Khaled Yakdan, Elmar Gerhards-Padilla, et al. 2016. discovRE: Efficient Cross-Architecture Identification
of Bugs in Binary Code.. In Ndss, Vol. 52. 58–79. doi:10.14722/ndss.2016.23185

Qian Feng, Minghua Wang, Mu Zhang, Rundong Zhou, Andrew Henderson, and Heng Yin. 2017. Extracting conditional for-
mulas for cross-platform bug search. In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security. 346–359. doi:10.1145/3052973.3052995

Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin. 2016. Scalable graph-based bug search
for firmware images. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 480–491.
doi:10.1145/2976749.2978370

Halvar Flake. 2004. Structural comparison of executable objects. DIMVA 2004, July 6-7, Dortmund, Germany (2004).
doi:10.1049/cp.2013.2196

Antonio Flores-Montoya and Eric Schulte. 2020. Datalog disassembly. In 29th USENIX Security Symposium (USENIX Security
20). 1075–1092. doi:10.1007/springerreference_63978

Felix Gröbert, Carsten Willems, and Thorsten Holz. 2011. Automated identification of cryptographic primitives in binary
programs. In Recent Advances in Intrusion Detection: 14th International Symposium, RAID 2011, Menlo Park, CA, USA,
September 20-21, 2011. Proceedings 14. Springer, 41–60. doi:10.1007/978-3-642-23644-0_3

Ilfak Guilfanov. 2006. FindCrypt2. https://hex-rays.com/blog/findcrypt2/. IDA Pro plug-in searches for cryptographic
algorithm.

Jongbeen Han, Mansub Song, Hyeonsang Eom, and Yongseok Son. 2021. An Efficient Multi-Signature Wallet in Blockchain
Using Bloom Filter. In Proceedings of the 36th Annual ACM Symposium on Applied Computing (Virtual Event, Republic of
Korea) (SAC’21). Association for Computing Machinery, New York, NY, USA, 273–281. doi:10.1145/3412841.3441910

Paul Havlak. 1997. Nesting of reducible and irreducible loops. ACM Transactions on Programming Languages and Systems
(TOPLAS) 19, 4 (1997), 557–567. doi:10.1145/262004.262005

Haojie He, Xingwei Lin, Ziang Weng, Ruijie Zhao, Shuitao Gan, Libo Chen, Yuede Ji, Jiashui Wang, and Zhi Xue. 2024b.
Code is not Natural Language: Unlock the Power of Semantics-Oriented Graph Representation for Binary Code Similarity
Detection. In 33rd USENIX Security Symposium (USENIX Security 24), PHILADELPHIA, PA. doi:10.14722/bar.2024.23006

Kaiyan He, Yikun Hu, Xuehui Li, Yunhao Song, Yubo Zhao, and Dawu Gu. 2024a. Strtune: Data Dependence-Based Code
Slicing for Binary Similarity Detection With Fine-Tuned Representation. IEEE Transactions on Information Forensics and
Security 19 (2024), 10233–10245. doi:10.1109/tifs.2024.3484944

Hex-rays. 2024. https://hex-rays.com/ida-pro/. A disassembler for computer software which generates assembly language
source code from machine-executable code.

Sabine Houy, Philipp Schmid, and Alexandre Bartel. 2023. Security Aspects of Cryptocurrency Wallets—A Systematic
Literature Review. ACM Comput. Surv. 56, 1, Article 4 (aug 2023), 31 pages. doi:10.1145/3596906

Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu. 2025. Binary Cryptographic Function
Identification via Similarity Analysis with Path-insensitive Emulation. doi:10.5281/zenodo.14943895

Yikun Hu, Hui Wang, Yuanyuan Zhang, Bodong Li, and Dawu Gu. 2021. A Semantics-Based Hybrid Approach on Binary
Code Similarity Comparison. IEEE Transactions on Software Engineering 47, 6 (June 2021), 1241–1258. doi:10.1145/
2635868.2635900

Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2017. Binary code clone detection across architectures and compiling
configurations. In 2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC). IEEE, 88–98. doi:10.
1109/icpc.2017.22

Ling Jiang, Junwen An, Huihui Huang, Qiyi Tang, Sen Nie, Shi Wu, and Yuqun Zhang. 2024. BinaryAI: Binary Software
Composition Analysis via Intelligent Binary Source Code Matching. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering. 1–13. doi:10.1145/3597503.3639100

Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. 2015. Obfuscator-LLVM – Software Protection for the
Masses. In Proceedings of the IEEE/ACM 1st International Workshop on Software Protection, SPRO’15, Firenze, Italy, May

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

https://doi.org/10.14722/bar.2020.23009
https://doi.org/10.1145/2594291.2594343
https://doi.org/10.1145/2939672.2939719
https://doi.org/10.1109/sp.2019.00003
https://doi.org/10.2172/5154317
https://doi.org/10.14722/ndss.2016.23185
https://doi.org/10.1145/3052973.3052995
https://doi.org/10.1145/2976749.2978370
https://doi.org/10.1049/cp.2013.2196
https://doi.org/10.1007/springerreference_63978
https://doi.org/10.1007/978-3-642-23644-0_3
https://hex-rays.com/blog/findcrypt2/
https://doi.org/10.1145/3412841.3441910
https://doi.org/10.1145/262004.262005
https://doi.org/10.14722/bar.2024.23006
https://doi.org/10.1109/tifs.2024.3484944
https://hex-rays.com/ida-pro/
https://doi.org/10.1145/3596906
https://doi.org/10.5281/zenodo.14943895
https://doi.org/10.1145/2635868.2635900
https://doi.org/10.1145/2635868.2635900
https://doi.org/10.1109/icpc.2017.22
https://doi.org/10.1109/icpc.2017.22
https://doi.org/10.1145/3597503.3639100

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:27

19th, 2015, Brecht Wyseur (Ed.). IEEE, 3–9. doi:10.1109/spro.2015.10
Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain Fouque. 2015. Automated identification of cryptographic primitives

in binary code with data flow graph isomorphism. In Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security. 203–214. doi:10.1145/2714576.2714639

Weilong Li, Jintian Lu, Ruizhi Xiao, Pengfei Shao, and Shuyuan Jin. 2024. RCFG2Vec: Considering Long-Distance Dependency
for Binary Code Similarity Detection. In Proceedings of the 39th IEEE/ACM International Conference on Automated Software
Engineering. 770–782. doi:10.1145/3691620.3695070

Xin Li, Xinyuan Wang, and Wentao Chang. 2012. CipherXRay: Exposing cryptographic operations and transient secrets
from monitored binary execution. IEEE transactions on dependable and secure computing 11, 2 (2012), 101–114. doi:10.
1109/tdsc.2012.83

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated graph sequence neural networks. arXiv
preprint arXiv:1511.05493 (2015). doi:10.21203/rs.3.rs-1364332/v1

Yan Lin and Debin Gao. 2021. When function signature recovery meets compiler optimization. In 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 36–52. doi:10.1109/sp40001.2021.00006

Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei Zou. 2018. 𝛼diff: cross-version binary
code similarity detection with dnn. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 667–678. doi:10.1145/3238147.3238199

Zhibo Liu, Yuanyuan Yuan, Shuai Wang, Xiaofei Xie, and Lei Ma. 2023. Decompiling x86 deep neural network executables.
In 32nd USENIX Security Symposium (USENIX Security 23). 7357–7374. doi:10.21236/ada449077

HJ Lu, Michael Matz, J Hubicka, A Jaeger, and M Mitchell. 2018. System V application binary interface. AMD64 Architecture
Processor Supplement (2018), 588–601. doi:10.3403/00374100u

Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014. Semantics-based obfuscation-resilient binary
code similarity comparison with applications to software plagiarism detection. In Proceedings of the 22nd ACM SIGSOFT
international symposium on foundations of software engineering. 389–400. doi:10.1145/2635868.2635900

Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2017. Semantics-based obfuscation-resilient binary code
similarity comparison with applications to software and algorithm plagiarism detection. IEEE Transactions on Software
Engineering 43, 12 (2017), 1157–1177. doi:10.1145/2635868.2635900

Zhenhao Luo, Pengfei Wang, Baosheng Wang, Yong Tang, Wei Xie, Xu Zhou, Danjun Liu, and Kai Lu. 2023. VulHawk: Cross-
architecture Vulnerability Detection with Entropy-based Binary Code Search.. In NDSS. doi:10.14722/ndss.2023.24415

Noé Lutz. 2008. Towards revealing attacker’s intent by automatically decrypting network traffic. Mémoire de maıtrise, ETH
Zürich, Switzerland (2008). doi:10.1016/s1353-4858(19)30098-4

Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratantonio, Mohamad Mansouri, and Davide Balzarotti.
2022. How machine learning is solving the binary function similarity problem. In 31st USENIX Security Symposium
(USENIX Security 22). 2099–2116. doi:10.1142/9789811224317_0003

Carlo Meijer, Veelasha Moonsamy, and Jos Wetzels. 2021. Where’s Crypto?: Automated Identification and Classification of
Proprietary Cryptographic Primitives in Binary Code. In 30th USENIX Security Symposium (USENIX Security 21). 555–572.
doi:10.1145/2714576.2714639

Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and Zhiqiang Lin. 2019. Probabilistic disassembly.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 1187–1198. doi:10.1016/s0007-
8506(07)63015-7

Niels Möller. 2013. Nettle. https://www.lysator.liu.se/~nisse/nettle. A low-level cryptographic library.
Mozilla. [n. d.]. Network Security Services (NSS). https://firefox-source-docs.mozilla.org/security/nss/index.html.
Gavin O’Gorman and Geoff McDonald. 2012. Ransomware: A growing menace. Symantec Corporation Arizona, AZ, USA.

doi:10.1108/oxan-es272348
Rolf Oppliger. 2009. SSL and TLS: Theory and Practice. Artech House, Inc., USA. doi:10.7838/jsebs.2017.22.2.169
Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2022. Learning approximate execution semantics

from traces for binary function similarity. IEEE Transactions on Software Engineering (2022). doi:10.1109/tse.2022.3231621
Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten Holz. 2015. Cross-architecture bug search

in binary executables. In 2015 IEEE Symposium on Security and Privacy. IEEE, 709–724. doi:10.1109/sp.2015.49
POODLE. 2014. CVE-2014-3566. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-3566. Accessed: 2024-01.
NGUYEN Anh Quynh and DANG Hoang Vu. 2015. Unicorn: Next generation cpu emulator framework. BlackHat USA 476

(2015). doi:10.1109/hcs49909.2020.9220443
Sriram Ramanujam and Marimuthu Karuppiah. 2011. Designing an algorithm with high Avalanche Effect. IJCSNS

International Journal of Computer Science and Network Security 11, 1 (2011), 106–111. doi:10.21203/rs.3.rs-4113962/v1
Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and Zhendong Su. 2009. Detecting code clones in

binary executables. In Proceedings of the eighteenth international symposium on Software testing and analysis. 117–128.
doi:10.1145/1572272.1572287

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

https://doi.org/10.1109/spro.2015.10
https://doi.org/10.1145/2714576.2714639
https://doi.org/10.1145/3691620.3695070
https://doi.org/10.1109/tdsc.2012.83
https://doi.org/10.1109/tdsc.2012.83
https://doi.org/10.21203/rs.3.rs-1364332/v1
https://doi.org/10.1109/sp40001.2021.00006
https://doi.org/10.1145/3238147.3238199
https://doi.org/10.21236/ada449077
https://doi.org/10.3403/00374100u
https://doi.org/10.1145/2635868.2635900
https://doi.org/10.1145/2635868.2635900
https://doi.org/10.14722/ndss.2023.24415
https://doi.org/10.1016/s1353-4858(19)30098-4
https://doi.org/10.1142/9789811224317_0003
https://doi.org/10.1145/2714576.2714639
https://doi.org/10.1016/s0007-8506(07)63015-7
https://doi.org/10.1016/s0007-8506(07)63015-7
https://www.lysator.liu.se/~nisse/nettle
https://firefox-source-docs.mozilla.org/security/nss/index.html
https://doi.org/10.1108/oxan-es272348
https://doi.org/10.7838/jsebs.2017.22.2.169
https://doi.org/10.1109/tse.2022.3231621
https://doi.org/10.1109/sp.2015.49
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-3566
https://doi.org/10.1109/hcs49909.2020.9220443
https://doi.org/10.21203/rs.3.rs-4113962/v1
https://doi.org/10.1145/1572272.1572287

81:28 Yikun Hu, Yituo He, Wenyu He, Haoran Li, Yubo Zhao, Shuai Wang, and Dawu Gu

Nitin Saxena. 2009. Progress on Polynomial Identity Testing. Bull. EATCS 99 (2009), 49–79. doi:10.1007/978-3-319-05446-9_7
Nitin Saxena. 2014. Progress on polynomial identity testing-II. Perspectives in Computational Complexity: The Somenath

Biswas Anniversary Volume (2014), 131–146. doi:10.1007/978-3-319-05446-9_7
Moritz Schloegel, Tim Blazytko, Moritz Contag, Cornelius Aschermann, Julius Basler, Thorsten Holz, and Ali Abbasi. 2022.

Loki: Hardening code obfuscation against automated attacks. In 31st USENIX Security Symposium (USENIX Security 22).
3055–3073. doi:10.1109/spro.2015.16

Jacob T Schwartz. 1980. Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM (JACM)
27, 4 (1980), 701–717. doi:10.1145/322217.322225

Amandeep Singh, Praveen Agarwal, and Mehar Chand. 2017. Analysis of development of dynamic s-box generation. Comput.
Sci. Inf. Technol 5, 5 (2017), 154–163. doi:10.13189/csit.2017.050502

Vugranam C Sreedhar, Guang R Gao, and Yong-Fong Lee. 1996. Identifying loops using DJ graphs. ACM Transactions on
Programming Languages and Systems (TOPLAS) 18, 6 (1996), 649–658. doi:10.1145/236114.236115

Theodoros Theodoridis, Tobias Grosser, and Zhendong Su. 2022. Understanding and exploiting optimal function inlining. In
Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating
Systems. 977–989. doi:10.1145/3503222.3507744

Sebastian Unger and Frank Mueller. 2002. Handling irreducible loops: optimized node splitting versus DJ-graphs. ACM
Transactions on Programming Languages and Systems (TOPLAS) 24, 4 (2002), 299–333. doi:10.1145/567097.567098

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017). doi:10.5040/
9781350101272.00000005

Robert A Wagner and Michael J Fischer. 1974. The string-to-string correction problem. Journal of the ACM (JACM) 21, 1
(1974), 168–173. doi:10.1016/0020-0190(90)90109-b

Hao Wang, Zeyu Gao, Chao Zhang, Mingyang Sun, Yuchen Zhou, Han Qiu, and Xi Xiao. 2024a. CEBin: A Cost-Effective
Framework for Large-Scale Binary Code Similarity Detection. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis. 149–161. doi:10.1145/3650212.3652117

Huaijin Wang, Pingchuan Ma, Shuai Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2023. sem2vec: Semantics-aware Assembly
Tracelet Embedding. ACM Transactions on Software Engineering and Methodology 32, 4 (2023), 1–34. doi:10.1145/3569933

Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, and Chao Zhang. 2022. Jtrans: Jump-
aware transformer for binary code similarity detection. In Proceedings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis. 1–13. doi:10.1145/3533767.3534367

Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, and Chao Zhang. 2024b. BinaryCorp.
https://github.com/vul337/jTrans. a dataset for the task of binary code similarity detection.

Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen, Paul Grosen, Christopher Kruegel, and
Giovanni Vigna. 2017. Ramblr: Making Reassembly Great Again.. In NDSS. doi:10.14722/ndss.2017.23225

Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable disassembling. In 24th USENIX Security Symposium (USENIX
Security 15). 627–642. doi:10.14722/bar.2019.23058

Shuai Wang and Dinghao Wu. 2017. In-memory fuzzing for binary code similarity analysis. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 319–330. doi:10.1109/ase.2017.8115645

Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace. 2009. ReFormat: Automatic Reverse Engineering of
Encrypted Messages. In Computer Security – ESORICS 2009, Michael Backes and Peng Ning (Eds.). Vol. 5789. Springer
Berlin Heidelberg, Berlin, Heidelberg, 200–215.

Kevin Weatherman. 2022. Yara for IDA 1.1.0. https://github.com/kweatherman/yara4ida. IDA Pro plugin with crypto/hash/-
compression signatures.

Douglas Brent West et al. 2001. Introduction to graph theory. Vol. 2. Prentice hall Upper Saddle River. doi:10.1142/
9789811273117_0001

Michael Joseph Wolfe, Carter Shanklin, and Leda Ortega. 1995. High Performance Compilers for Parallel Computing. Addison-
Wesley Longman Publishing Co., Inc., USA. doi:10.1109/hpca.2008.4658658

Dongpeng Xu, Jiang Ming, Yu Fu, and DinghaoWu. 2018. VMHunt: A verifiable approach to partially-virtualized binary code
simplification. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 442–458.
doi:10.1145/3243734.3243827

Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2017b. Cryptographic function detection in obfuscated binaries via bit-precise
symbolic loop mapping. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 921–937. doi:10.1109/sp.2017.56

Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan Cheng, Guanhong Tao, Qingkai Shi, Zhuo Zhang,
and Xiangyu Zhang. 2023a. Improving Binary Code Similarity Transformer Models by Semantics-Driven Instruction
Deemphasis. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. 1106–1118.
doi:10.1145/3597926.3598121

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

https://doi.org/10.1007/978-3-319-05446-9_7
https://doi.org/10.1007/978-3-319-05446-9_7
https://doi.org/10.1109/spro.2015.16
https://doi.org/10.1145/322217.322225
https://doi.org/10.13189/csit.2017.050502
https://doi.org/10.1145/236114.236115
https://doi.org/10.1145/3503222.3507744
https://doi.org/10.1145/567097.567098
https://doi.org/10.5040/9781350101272.00000005
https://doi.org/10.5040/9781350101272.00000005
https://doi.org/10.1016/0020-0190(90)90109-b
https://doi.org/10.1145/3650212.3652117
https://doi.org/10.1145/3569933
https://doi.org/10.1145/3533767.3534367
https://github.com/vul337/jTrans
https://doi.org/10.14722/ndss.2017.23225
https://doi.org/10.14722/bar.2019.23058
https://doi.org/10.1109/ase.2017.8115645
https://github.com/kweatherman/yara4ida
https://doi.org/10.1142/9789811273117_0001
https://doi.org/10.1142/9789811273117_0001
https://doi.org/10.1109/hpca.2008.4658658
https://doi.org/10.1145/3243734.3243827
https://doi.org/10.1109/sp.2017.56
https://doi.org/10.1145/3597926.3598121

Binary Cryptographic Function Identification via Similarity Analysis with Path-Insensitive Emulation 81:29

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017a. Neural network-based graph embedding
for cross-platform binary code similarity detection. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security. 363–376. doi:10.1109/eurosp53844.2022.00012

Xiangzhe Xu, Zhou Xuan, Shiwei Feng, Siyuan Cheng, Yapeng Ye, Qingkai Shi, Guanhong Tao, Le Yu, Zhuo Zhang, and
Xiangyu Zhang. 2023b. PEM: Representing Binary Program Semantics for Similarity Analysis via a Probabilistic Execution
Model. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 401–412. doi:10.1145/3611643.3616301

Yinxing Xue, Zhengzi Xu, Mahinthan Chandramohan, and Yang Liu. 2018. Accurate and scalable cross-architecture
cross-os binary code search with emulation. IEEE Transactions on Software Engineering 45, 11 (2018), 1125–1149.
doi:10.1109/tse.2021.3069529

Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015. A generic approach to automatic deobfusca-
tion of executable code. In 2015 IEEE Symposium on Security and Privacy. IEEE, 674–691. doi:10.1109/sp.2015.47

Jia Yang, Cai Fu, Xiao-Yang Liu, Heng Yin, and Pan Zhou. 2021. Codee: A tensor embedding scheme for binary code search.
IEEE Transactions on Software Engineering 48, 7 (2021), 2224–2244. doi:10.1109/tse.2021.3056139

Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020a. Order matters: Semantic-aware neural networks
for binary code similarity detection. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 1145–1152.
doi:10.1609/aaai.v34i01.5466

Zeping Yu, Wenxin Zheng, Jiaqi Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2020b. Codecmr: Cross-modal retrieval for
function-level binary source code matching. Advances in Neural Information Processing Systems 33 (2020), 3872–3883.
doi:10.31274/td-20240329-185

Fangfang Zhang, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014. Program logic based software plagiarism detection. In 2014
IEEE 25th international symposium on software reliability engineering. IEEE, 66–77. doi:10.1109/issre.2014.18

Hang Zhang and Zhiyun Qian. 2018. Precise and accurate patch presence test for binaries. In 27th USENIX Security
Symposium (USENIX Security 18). 887–902. doi:10.1016/j.comcom.2021.03.011

Zhuo Zhang, Guanhong Tao, Guangyu Shen, Shengwei An, Qiuling Xu, Yingqi Liu, Yapeng Ye, Yaoxuan Wu, and Xiangyu
Zhang. 2023. PELICAN: Exploiting Backdoors of Naturally Trained Deep Learning Models In Binary Code Analysis. In
32nd USENIX Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023. USENIX Association,
2365–2382. doi:10.54499/2020.09139.bd

Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee, Yonghwi Kwon, Yousra Aafer, and Xiangyu Zhang. 2021.
Osprey: Recovery of variable and data structure via probabilistic analysis for stripped binary. In 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 813–832. doi:10.1109/sp40001.2021.00051

Anshunkang Zhou, Yikun Hu, Xiangzhe Xu, and Charles Zhang. 2024. ARCTURUS: Full Coverage Binary Similarity Analysis
with Reachability-guided Emulation. ACM Transactions on Software Engineering and Methodology 33, 4 (May 2024), 1–31.
doi:10.1145/3640337

Richard Zippel. 1979. Probabilistic algorithms for sparse polynomials. In International symposium on symbolic and algebraic
manipulation. Springer, 216–226. doi:10.1007/3-540-09519-5_73

Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang. 2019. Neural Machine Translation Inspired
Binary Code Similarity Comparison beyond Function Pairs. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The Internet Society. doi:10.14722/ndss.2019.23492

Received 2024-10-13; accepted 2025-02-18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 81. Publication date: April 2025.

https://doi.org/10.1109/eurosp53844.2022.00012
https://doi.org/10.1145/3611643.3616301
https://doi.org/10.1109/tse.2021.3069529
https://doi.org/10.1109/sp.2015.47
https://doi.org/10.1109/tse.2021.3056139
https://doi.org/10.1609/aaai.v34i01.5466
https://doi.org/10.31274/td-20240329-185
https://doi.org/10.1109/issre.2014.18
https://doi.org/10.1016/j.comcom.2021.03.011
https://doi.org/10.54499/2020.09139.bd
https://doi.org/10.1109/sp40001.2021.00051
https://doi.org/10.1145/3640337
https://doi.org/10.1007/3-540-09519-5_73
https://doi.org/10.14722/ndss.2019.23492

	Abstract
	1 Introduction
	2 Motivation and Overview
	2.1 Limitations of Existing Techniques
	2.2 Challenge: Practicality of the Analysis
	2.3 Basic Idea of BinCrypto
	2.4 System Overview of BinCrypto

	3 Design
	3.1 Code Features
	3.2 Preprocessing
	3.3 Code Emulation
	3.4 Similarity Measurement

	4 Implementation
	5 Evaluation
	5.1 Experiment Setup
	5.2 RQ1: Performance
	5.3 RQ2: Comparison with Existing Work
	5.4 RQ3: Applications

	6 Discussion and Future Work
	6.1 Application Scope
	6.2 Obfuscation
	6.3 Function Inlining
	6.4 Comparison with Dynamic Methods
	6.5 Proprietary Cryptographic Function Identification

	7 Related Work
	7.1 Binary Cryptographic Function Detection
	7.2 Binary Similarity Analysis

	8 Conclusion
	Acknowledgments
	References

