
RGDroid: Detecting Android Malware with Graph
Convolutional Networks against Structural Attacks

Yakang Li†, Yikun Hu†, Yizhuo Wang, Yituo He, Haining Lu, Dawu Gu∗
Shanghai Jiao Tong University

Shanghai, China

{liyakang n, yikunh, mr.wang-yz, yituo he, hnlu, dwgu}@sjtu.edu.cn

Abstract—The rapid growth of Android malware calls for
anti-malware systems to detect malware automatically. Detecting
malware effectively is a non-trivial problem due to the high
overlap in behaviors between malware and benign apps. Most ex-
isting automated Android malware detection methods use statistic
features extracted from apps or graphs generated from method
calls to identify malware. However, the methods that only use
statistic features lead to false positives due to ignoring program
semantics. Existing graph-based approaches suffer scalability
problems due to the heavy-weight program analysis and time-
consuming graph matching. In addition, graph-based approaches
could be evaded by modifying dependencies among method calls.
As a result, crafted malicious apps resemble the benign ones.

In this paper, we propose a novel deep learning-based detection
system, named RGDroid, which is capable of detecting malware
under graph structural attacks. It combines API information
extracted from Android document and learns behavior features
from function call graph by graph neural network. Specifically,
to defend against graph adversarial attacks, RGDroid reduces
the connectivity of different functional parts to mitigate the
effect of structural modifications on the final graph embedding.
To comprehensively evaluate the robustness of RGDroid, we
implement four influential graph adversarial attacks to simu-
late current capabilities and knowledge of Android malware
attackers. The attack success rate (ASR) of two state-of-the-art
detection systems (i.e., MaMaDroid, MalScan) is above 70.0%
while the ASR of RGDroid under the four graph attacks is below
6.1%.

Index Terms—malware, deep learning, adversarial attack

I. INTRODUCTION

The Android platform has been exploited by malware

developers due to its huge market share and open-source

features. Android malware greatly endangers the privacy and

data security of users, such as stealing user information and

controlling the user’s mobile remotely. The exponential growth

of Android malware led to a strong focus on automated

malware detection [1]–[8] to protect user data and privacy. In

the meantime, malware developers also use various adversarial

attacks to evade detection [9]–[13].

To detect Android malware, the main task is to identify

malicious behaviors and resist potential adversarial attacks

on detectors, which faces two challenges. On the one hand,

malicious code usually occupies a small part of the entire

app and malware show similar behaviors to benign apps.

†
Yakang Li and Yikun Hu contributed equally to this paper.∗
Dawu Gu is the corresponding author.

Existing methods [3], [5], [7], [8] based on program statistics

usually use API frequency or opcode frequency, resulting in

low detection accuracy due to ignoring program semantics. To

increase accuracy, recent work proposes graph-based detection

methods [14]–[16], which distill the program semantics into

graph representations and further perform graph matching to

identify malicious behaviors. However, graph-based methods

suffer a scalability problem due to the heavy-weight pro-

gram analysis and time-consuming graph matching. Recent

studies [1], [2], [17] use lightweight analysis to generate

graphs from the program and perform graph analysis. When

benign apps show similar behaviors as malware, these methods

may lead to false positives. On the other hand, the detection

performance of graph-based methods could be degraded se-

riously under graph structural attacks [1], [9], [10], which

modify the calling relationships between the methods in the

malware. Such modification causes features extracted from

crafted malware to resemble benign apps.

In this paper, we propose a robust malware detection sys-

tem based on Graph Convolutional Networks (GCN), namely

RGDroid. The goal of RGDroid is to detect malware under

graph structural attacks. To extract semantic features of be-

havior, RGDroid constructs a relation graph of Android APIs

according to Android document and converts each API entity

into an embedding. Each API in the function call graph (FCG)

generated from apps can be mapped to an embedding as the

initial feature of the FCG’s node. Then GCN model automati-

cally learns the structure and semantic information of FCG by

iteratively aggregating and propagating node information. The

cost for each round of node feature propagation for each FCG

input is O(|V |+|E|) 1 when using a well-trained GCN model.

That is much more scalable than general graph isomorphism

algorithms whose general bound is in exponential time [18].

Therefore, RGDroid can scale to complex FCG.

To resist adversarial attacks, RGDroid reduces the connec-

tivity of different functional parts based on the insight that the

edges between different functional parts have a comparatively

large impact on graph embedding. The state-of-the-art attack

establishes a connection between the malicious part and the

benign part to hide the malicious features by adding redundant

edges, i.e., fake calling relationships [9]. RGDroid removes

1|V | is the number of nodes and |E| is the number of edges.

639

2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

2640-7574/23/$31.00 ©2023 IEEE
DOI 10.1109/SANER56733.2023.00065

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

A
na

ly
si

s,
Ev

ol
ut

io
n

an
d

R
ee

ng
in

ee
rin

g
(S

A
N

ER
) |

 9
78

-1
-6

65
4-

52
78

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SA

N
ER

56
73

3.
20

23
.0

00
65

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 01,2023 at 05:28:11 UTC from IEEE Xplore. Restrictions apply.

those redundant edges by dividing the graph into subgraphs

according to functionalities. Although the graph structures

are changed, functions with more similar functionality are

still “closer” to each other. Therefore, RGDroid divides the

graph into subgraphs with different functions by community

detection algorithm. Then it extracts features from subgraphs

and ensembles them to make final prediction.

We evaluate RGDroid on a dataset of 26,463 apps includ-

ing 13,363 malware and 13,100 benign apps spanning from

2013 to 2019. And we produce two experiments to evaluate

the effectiveness and robustness against adversarial attacks

respectively. Our first experiment focuses on the effectiveness

of malware detection. Compare to two state-of-the-art detec-

tors (i.e., MalScan [1], MaMaDroid [2]), RGDroid is able to

detect Android malware with up to 96.1% f1-measure accuracy

while the f1-measure of MaMadroid and MalScan are 91.6%

and 93.5% respectively. The result shows that RGDroid has

better performance in detecting malware. Our second exper-

iment focuses on the robustness against adversarial attacks.

We present four graph adversarial attacks (i.e., HRAT [9],

ReWatt [19], GRABNEL [20], Gradient-based [21]) for the

detectors considering Android malware attackers’ current ca-

pabilities and knowledge. The attack success rate (ASR) of

RGDroid under the four graph attacks is below 6.1% while

the ASR of MaMadroid and MalScan is above 70%. The

experimental result indicates that RGDroid is effective in

detection and is robust against adversarial attacks.

In summary, The major contributions of this work include:

• We propose an Android malware classifier that achieves

comparable detection performance when compared to

MalScan [1] and MaMaDroid [2], two state-of-the-art

methods. We combine API information extracted from

Android document and graph neural network to learn

behavior features.

• We propose an ensemble approach based on community

detection to defend against adversarial attacks. To the best

of our knowledge, this is the first work that considers

FCG-based classifier defenses against adversarial attacks.

• We conduct an evaluation demonstrating that our method

is effective for malware detection and is resilient against

practical adversarial malware attacks. The results of ex-

tensive experiments show that our method can achieve a

96.1% f1 measure. And the attack success rate (ASR) of

our method under the four graph attacks is below 6.1%

while the ASR of another two state-of-the-art FCG-based

systems (i.e., MaMaDroid, MalScan) is above 70.0%.

II. PRELIMINARY

In this section, we present the attack problem statement

faced by the graph based malware detection systems and in-

troduce the basic knowledge of Graph Convolution Networks.

A. Adversarial Attack

1) Attacker capabilities: To ensure that the modified app is

consistent with the original function, we consider four types

of modification actions [9], namely adding edges, rewiring,

Classifier Feature Vector?

FCG Construction

Adding node Adding edge Rewiring Deleting node

Feature Extraction

Fig. 1. Attack process

adding nodes, and deleting nodes given an FCG extracted from

an Android app. The details are shown in Figure 1.

• Constraints. An attacker cannot modify nodes and edges

in FCG arbitrarily. For example, an attacker cannot mod-

ify Android framework APIs used in app. Therefore, let

C denote the set of modifiable nodes.

• Adding node. An attacker adds a new node vnew on the

graph and select a node from C to invoke it.

• Adding edge. An attacker selects two nodes vbeg, vend
from C and builds an invocation relation from vbeg to

vend.

• Rewiring. An attacker first finds an edge which connects

the caller vbeg ∈ C and the callee vend, and then removes

the edge from the graph. To maintain the connectivity of

nodes in the removed edge, the attacker finds another

intermediate node vmid ∈ C and creates two new edges

from vbeg to vmid and from vmid to vend.

• Deleting node. An attacker selects a node vtar ∈ C

and removes it. To keep the functionality, the attacker

first collects node sets vcaller and vcallee representing

functions that call vtar and called by vtar, respectively.

Then the attacker builds call relations from all nodes in

vcaller to each node in vcallee after removing vtar.

2) Attack process: An attacker misleads a detector by

manipulating the FCG of a malicious app. In order to evaluate

the robustness of our method, we consider both black-box and

white-box attacks. In white-box attack scenario, the adversary

has access to the dataset, feature space, and model parameters

of target systems. In black-box attack scenario, the adversary

can only interact with the classifier by querying it with an

input graph and observing the model output. According to the

feedback from the classifier, the attacker iteratively modifies

the graph using four operations. Then the call relationships

in malicious app can be modified through the sequence of

modifications generated by the attack process. In this paper,

we only consider the success of the attack in the feature space

rather than problem space.

B. Graph Convolution Networks

Graph Neural Networks have been shown to be effective in

graph representation learning. These models usually learn node

representations by iteratively aggregating, transforming, and

propagating node information. In this work, we adopt graph

640

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 01,2023 at 05:28:11 UTC from IEEE Xplore. Restrictions apply.

convolutional networks (GCN) [22]. A graph convolutional

layer in the GCN framework can be represented as

H l = δ(D− 1
2AD

1
2H l−1W l) (1)

where H l ∈ R
N×dl is the output of the l-th layer, W l is

the learnable parameters of l-th layer, dl is the node feature

dimension of l-th layer. A GCN model usually contains l graph

convolutional layers. To perform graph classification, we apply

a readout operation pool(·) to obtain a graph level embedding

uG.

φ(G) = pool(H l) (2)

Then a multilayer perceptron (MLP) and softmax layer are

then sequentially applied on the graph embedding to predict

the label of the graph.

y = f(uG) = softmax(MLP (uG, θ)) (3)

III. METHODOLOGY

In this section, we first present an overview of RGDroid,

and then describe the details of RGDroid.

A. Approach Overview

We formulate malware detection as a binary classification

problem at graph representation. Figure 2 presents an overview

of our approach, which consists of the following three main

stages.

• Graph-based Program Representation. For each

app, RGDroid distills the program into function call

graph (FCG) and combines Android document into FCG.

The enhanced FCG can be used to determine whether a

program contains malicious behaviors.

• Graph Partition. After generating the graph represen-

tation, RGDroid then divides it into certain subgraphs

by community detection to reduce the connectivity of

different functional modules.

• Learning and Detection. With subgraphs generated by

community detection, RGDroid adopts a graph convolu-

tional network to learn graph embedding and then uses a

single full-connected layer with sigmoid function as the

classifier to decide whether each app contains malicious

behaviors.

B. Graph-based Program Representation

1) API Embedding Generation: API information is one

of the most important features since the applications usually

invoke framework APIs to implement specific function. For

example, malware usually invokes sensitive APIs that oper-

ate on sensitive data to perform malicious activities. In the

program, the API is represented as signature information (i.e.

package name, class name return type, method name, and

parameter list). However, the signature needs to be transformed

into a feature vector for subsequent algorithms usage. An

intuitive method is to use a one-hot encoded vector as function

attributes, which is very sparse and does not contain function

semantic information. It can only provide little information for

app behavior analysis.

For a better representation of the API information, RGDroid

builds an API relation graph by collecting Android API doc-

uments and extracting entities such as APIs and permissions

and relations between those entities. For example, the API

document refers to another API with similar functionality

in the functional description section of one API. Therefore,

there is a relationship between these two API entities. After

building the relation graph, RGDroid converts all the entities

in the relation graph into an embedding representation using

the algorithm TransE [23]. The generated API embedding can

characterize the API similarity and the relation with other

APIs. Finally, RGDroid obtains a API mapping from API

signatures to API embeddings.

2) FCG Construction: To distill the program semantics as

graph representation, RGDroid constructs FCG from Dalvik

code by static analysis. For better semantic representation,

RGDroid initializes the node attributes to the corresponding

API embedding according to the API mapping. The enhanced

FCG is represented as a directed, unweighted graph G = (V,

E, X).

• V = {vi|1 ≤ i ≤ N} denotes the set of functions, where

N is the number of nodes.

• E ⊆ V ×V denotes the set of function calls, where edge

(vi, vj ∈ E) indicates that there exists a function call

from the caller function vi to the callee function vj .

• X ⊆ R
N×D denotes the set of node attributes, where D

represents the attribute dimension. Each D-dimensional

vector is the API embedding corresponding to the node.

C. Graph Partition

After generating the enhanced function call graph, RGDroid

divides the graph into subgraphs by performing community de-

tection to resist adversarial attacks. Although the Graph Neural

Network (GNN) can embed the graph into a feature vector by

propagating and aggregating the information of neighboring

nodes, GNN suffers graph structural attacks. As described in

Section II-A, the calling relationship among method calls can

be modified to cause the final embedding to be disturbed. The

modifications are guided by the model gradient to maximally

perturb the propagation process. The greater the functional

difference between two nodes, the greater the value of edge

gradient connecting them.

To mitigate the effect of structural modifications on the

final graph embedding, RGDroid reduces the connectivity of

different functional parts. An Android app is made up of

certain specific modules and each module completes different

functionality. The nodes in one module should be highly

cohesive, and nodes in the different modules should be loosely

coupled. Furthermore, a previous study [24] has demonstrated

that a software call graph can be treated as a network with

community structures. Therefore, RGDroid performs commu-

nity detection to divide a FCG into a set of subgraphs in

order to reduce interference between different functional parts.

For example, the multi-level algorithms [25] start with every

node belongs to a separate community and then iteratively

move nodes between communities in an attempt to improve

641

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 01,2023 at 05:28:11 UTC from IEEE Xplore. Restrictions apply.

?

Construct API
Relation Graph

Generate API
Embedding

Construct Function
Call Graph

Enhance Function
Call Graph

Graph-based Program Representation

API name Embedding

getMessageBody [0.105,..., -0.467]

SmsMessage [0.047,..., -0.483]

getPdu [0.094,..., -0.405]

getUserData [0.062,..., -0.483]

... ...

Function Call Graph

API
Embedding

Generate
Subgraphs

Generate Edge
Weight

Graph Partition

Function Call Graph

Edge weight is 0

Edge weight is 1

Propagate And
Aggregate Feature

Extract Graph
Embedding

Classify

Learning and Detection

1

2

3

Fig. 2. System overview of RGDroid

the modularity score which is a measure of the quality of a

partition of a graph into communities. The algorithm stops

when it is no longer possible to increase the modularity score

by merging communities into single vertices. The eigenvector

algorithms [26] calculate the eigenvector of the modularity

matrix for the largest positive eigenvalue and then separat-

ing vertices into two community based on the sign of the

corresponding element in the eigenvector. The number of

communities divided depends on the functionality distribution

of the target under analysis. For example, a real malicious

app (ccvimapgames, ccbikinihunt) can be partitioned into 19

functional partitions including device information acquisition

part, network connection part and game function part. How to

choose specific community detection algorithms is discussed

in Section IV-A3

To conveniently represent the subgraphs obtained by com-

munity detection, RGDroid generates edge weights to repre-

sent the importance of calling relationships. Edges in the same

subgraph are given a weight of 1 while edge weights connect-

ing different subgraphs are 0. Through the above operations,

RGDroid removes the edges between subgraphs to reduce

information propagation in different functional parts. Further,

to reduce the damage to functional integrity of removing

edges, RGDroid preserves calls from arbitrary methods to the

APIs.

D. Learning and Detection

After obtaining subgraphs of a FCG, RGDroid employs

Graph Convolutional Network (GCN) to learn graph embed-

ding from subgraphs and classifies the input sample. RGDroid

uses the label of the entire graph instead of subgraphs as the

supervision signal for training. The label of the whole graph

comes from the specific app which is labeled by VirusTotal as

0 or 1 according to whether the app is confirmed as malicious.

1) Feature Learning: GCN can operate directly on graphs

and leverage their structural information and node features to

generate graph embeddings. Given a FCG, the GCN takes as

input: an adjacency matrix A ∈ {0, 1}|V |×|V | representing

the graph structure, a feature matrix X ∈ R
N×D where each

row is a vector representation of a node, a weight vector

E ∈ {0, 1}|E| representing the edge weights described in

Section III-C. Then the GCN model generates node embedding

that incorporates topological structure and node features itera-

tively. A GCN model usually consists of L graph convolutional

layers. At each layer, the features are aggregated to form the

next layer’s features using a propagation rule. As the FCG is

direct graph, each hidden layer can be expressed as below:

hl+1
j = σ(

∑

j∈Ni

eji
cji

h
(l)
j W (l) + b(l)) (4)

where Ni is the set of neighbors of node i, σ is an activation

function (e.g., ReLU), cji is the product of the square root of

node degrees, eji ∈ E is the weight on the edge from node j

to node i, h
(l)
j is the feature of the node i of layer l, W (l) is

the learnable parameters matrix of layer l. RGDroid obtains

node feature matrix H l+1 after propagation. Further, RGDroid

does not use the normalization term cji to minimize node

degree impact as much as possible. Note that the initial feature

matrix H0 = X . After updating the node feature, RGDroid

uses MaxPooling layer as ReadOut layer to calculate the max

of every column in the node feature matrix to obtain the graph

embedding.

ul = max(Hl) (5)

Then RGDroid concatenates the features of each layer as the

final graph embedding uG which is behavior level feature

vector. The cost for each round of propagation is O(|V |+|E|).
|V | is the number of nodes and |E| is the number of edges.

Therefore, feature extraction based GCN can scale to complex

FCG.

2) Classification: Given extracted graph embedding,

RGdroid adopts a multilayer perceptron (MLP) and sigmoid

layer to predict the label probability of the graph ŷ and uses

Binary Cross Entropy loss as loss function.

ŷ = sigmoid(MLP (uG)) (6)

L = ylogŷ + (1− y)log(1− ŷ) (7)

where L denotes the loss, y denotes the ground-truth label

of G. In order to reduce information loss caused by dividing

subgraphs and achieve better defense, RGDroid ensembles the

model’s predictions for each set of subgraphs generated by

different community detection algorithms to make final pre-

dictions. The subgraphs obtained by different community de-

tection algorithms contain various information since different

algorithms divide subgraphs from different perspectives. The

perturbation made by the attacker must be valid for multiple

sets of subgraphs to evade successfully. Specifically, RGDroid

obtains different edge weights by performing different com-

munity detection algorithms and uses the same GCN model

642

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 01,2023 at 05:28:11 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: RGDroid: Learning and Detection

Stage I: Initialization
• Initialize node attribute X by API mapping

• Generate edge weight C = {E1, E2, ..., Em} by m

community detection algorithms

• Set learning rate λ
• Initialize the weights W of the parameters of model M.

Stage II: Training
• Input: Training data set D = {Gi, yi}ni=1

• Output: Model M

• In each epoch:

– Set loss L ← 0
– Sample a batch of D
– foreach E in C do

∗ Set the edge weight as E
∗ Calculate node feature using (4)

∗ Get graph embedding according to (5)

∗ Calculate loss L′
according to (6) and (7)

∗ L ← L+ L′

end
– Update the parameters W with learning rate λ

W ← W − λ∇L

TABLE I
SUMMARY OF DATASETS USED IN OUR EXPERIMENTS

Dataset Benign Malware Total
2013 1,852 1,985 3,837
2014 1,802 1,965 3,767
2015 1,768 1,830 3,616
2016 2,002 1,926 3,928
2017 1,876 1,818 3,694
2018 2,047 1,906 3,953
2019 1,735 1,933 3,668
Total 13,100 13,363 26,463

to extract the graph embedding. But it adopts different MLPs

to classify the graph with different edge weights. Finally, it

takes the maximum value of different classification results to

get the final prediction. During training, the whole model is

iteratively updated by minimizing the loss function 7. The

detailed implementation of RGDroid is given in Algorithm 1.

IV. EVALUATION

In this section, we conduct experiments to evaluate the

accuracy and robustness of RGDroid and answer the following

research questions:

• RQ1: How effective is RGDroid compared to other An-

droid malware detection systems?

• RQ2: How robust is RGDroid under graph structural

attack compared to other methods?

• RQ3: What is the runtime overhead of RGDroid on

detecting Android malware?

A. Evaluation Setup

Fig. 3. The values of modularity of four different community detection
algorithms

1) Data Collection: Dataset used to evaluate our method

includes 26,463 Android apps. We crawled these apps from

AndroZoo [27] which contains tens of millions of APK files,

each of which has been detected by several different antivirus

products in VirusTotal. Apps that are marked by more than

5 antivirus products are considered malicious and those that

are not marked are considered benign. The dataset contains

13,363 malware and 13,100 benign apps and the time period

of our datasets ranges from 2013 to December 2019. Table I

lists the details of our datasets.

2) Dataset Partition: We split the data into three parts: train

set, valid set, and test set. We sample 2,002 benign examples

and 2,002 malware examples as the testing set stratified by

year and the rest as the training set. We use five-fold cross-

validations for all detectors. For each fold, we use the model

that performs best on the valid set to predict the test set and

take the average results as the final performance.

3) RGDroid Configuration: We describe the specific con-

figuration used by RGDroid.

Partition Configuration. In Section III-C, RGDroid di-

vides the function call graph through community detection

algorithms. There are four widely used community detection

algorithms (i.e., infomap [28], label propagation [29], multi

level [25], and leading eigenvector [26]). To confirm their

clustering performance, we sample 1000 apps, extract their

FCGs and conduct community detection on them. Then we

record modularity values which measure the strength of divi-

sion of a graph into communities. Graphs with high modularity

have dense connections between the nodes within communities

but sparse connections between nodes in different commu-

nities. The result shows the average modularity value of

communities generated by informap, label propagation, multi

level, and leading eigenvector are 0.58, 0.45, 0.64 and 0.51,

respectively. Due to the poor performance of label propagation,

we use the other three algorithms. We also use Normalized

Mutual Information (NMI) to measure the similarity of the

community structures obtained by three community detection

643

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 01,2023 at 05:28:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The Normalized Mutual Information (NMI) of the communities
generated by different community detection algorithms

algorithms. The larger the NMI, the more relevant the com-

munity structure is perfect correlation. As shown in Figure 4,

the NMI between the community detection pair is 0.72, 0.55

and 0.48, respectively. It indicates that the subgraphs obtained

by different community detection algorithms are relatively

different. Therefore, RGDroid selects informap, multi level

and leading eigenvector as community detection algorithms.

Training Configuration. We set the number of graph

convolutional layers of model as 3 and hidden dim is 64. The

GCN model is trained via Adam optimizer with the learning

rate set to 0.001. Our model was trained on a server machine

with a Nvidia GTX 3080Ti GPU and a 2.20GHZ CPU with 10

cores and 128G memory. We have released the source code of

our approach at https://github.com/saneranonymous/RGDroid

with the sha256 of apps which we used in our experiments.

B. RQ1: Detection Effectiveness

In this section, we evaluated the effectiveness of RGDroid

in scenarios where no adversarial examples exist compared

with the following methods.

• MalScan [1]. We implement MalScan according to the

source code. Note that, RGDroid uses the API embedding

to enhance the detection capabilities. For a fair com-

parison, we use API embedding to enhance MalScan.

Specifically, we divide API embeddings into different

API clusters according to their similarity and replace

each sensitive API call used in MalScan’s implementation

with corresponding API cluster. we select the best among

experimental results conducted by different classifica-

tion models (i.e., 1-Nearest Neighbor (1NN), 3-Nearest

Neighbor (3NN), Support Vector Machine (SVM), and

Random Forest (RF)).

• MaMaDroid [2]. We implement MaMaDroid according

to the description and source code in its paper. And We

also adopt different classifiers (i.e., 1NN, 3NN, SVM,

RF) and select the best result. We find that 1NN is able

to maintain better effectiveness on detecting malware and

select it as the best model.

• GCN-based classifier. We implement the following three

versions of the GCN-based classifier. (i) Baseline GCN:

It takes the original FCG as input and uses the node

degree as the initial attribute. (ii) AGCN: It takes the

FCG as input and uses generated node embedding as the

initial node attribute. (iii) AGCN (Single): It conducts a

single community detection algorithm to split the FCG

into subgraphs as inputs. For all the above classifiers, we

set the number of convolutional layers as 3, hidden dim

is 64. And we concatenate the features of each layer and

then use a full-connected layer and sigmoid layer to get

a final prediction.

1) Evaluation Measures: We adopt widely used metrics to

measure the effectiveness of our method. We report F-measure

and accuracy for presenting the overall detection effectiveness

of detectors. Moreover, we also report precision, recall, FNR

and FPR to see how detectors perform on classifying both

malicious and benign samples.
2) Result: As shown in Table II, we see that RGDroid

can maintain a high f-measure and accuracy above 96%.

The f-measure of RGDroid is 96.1% while MaMaDroid and

Malscan can achieve 91.6% and 93.5% f-measure respectively.

Although the recall of Malscan is 97.4% higher than RGDroid,

the precision of Malscan is only 88.2%. The reason is that

the Malscan only considers simple semantic information (i.e.,

centrality) which may lead to false positives when benign apps

show similar behaviors as malware. As for MaMadroid, it only

uses the package or family information of the method while

RGDroid makes full use of methods and call information.
For GCN-based classifiers, the Baseline GCN achieves

90.4% F-measure and 91.3% recall which shows that it has a

certain detection ability as it can learn the topology informa-

tion from the FCG. Compared to Baseline GCN, GCN with

API embedding (AGCN) greatly improves detection perfor-

mance and the F-measure improves from 90.4% to 96.3%,

since the function attribute is crucial for malware detection.

The overall performance of RGDroid is slightly lower than

AGCN. Because it divides the graph into multiple subgraphs

and removes the edges between the subgraphs, resulting in

some information loss. But the performance of RGDroid is

slightly higher than the models with a single input. This

indicates that combining the subgraphs generated by different

community detection is beneficial to reduce information loss.
We also evaluate how well RGDroid on detecting malware

by training and testing using samples that are developed in the

same year. Figure 5 presents the detection results achieved

by MalScan, MaMaDroid, and MalScan enhanced by API

Embedding and RGDroid on each dataset, respectively. We

see that for each dataset, RGDroid can maintain a high F-

measure above 94%. Compared to other detectors, RGDroid

has better performance.
Answer to RQ1: RGDroid consistently achieves high ac-

curacy rates and F1 scores, with a consistent performance

of over 95%. API embedding extracted from Android doc-

ument significantly contributed to the achieved effectiveness

of RGDroid.

644

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 01,2023 at 05:28:11 UTC from IEEE Xplore. Restrictions apply.

TABLE II
EFFECTIVENESS COMPARISON OF DIFFERENT DETECTORS

Methods F-measure Accuracy Precision Recall FPR FNR
MaMaDroid 91.6% 88.2% 89.8% 93.9% 17.6% 6.0%

MalScan 93.5% 92.2% 88.2% 97.4% 12.9% 2.5%
Baseline GCN 90.4% 90.1% 89.4% 91.3% 11.1% 8.6%

AGCN 96.3% 96.3% 96.8% 95.7% 3.2% 4.2%
AGCN (Single) 95.9% 96.0% 97.2% 94.6% 2.7% 5.3%

RGDroid 96.1% 96.2% 96.8% 95.4% 3.1% 4.5%

Fig. 5. F-measure of MalScan, MalScan enhanced by API Embedding,
MaMadroid, RGDroid with datasets from the same year

Fig. 6. Positions of benign vs malicious apps in the feature space of the first
two components of the PCA.

3) Principal Component Analysis: We apply PCA to select

the two most important PCA components of graph embedding.

We plot the positions of the two components for benign and

malicious samples. Figure 6 shows that benign and malware

have relatively different distributions in feature space. The

difference highlight that RGDroid can learn discriminative

features to represent the behavior of malicious and benign

samples.

4) Case Study: We analyze 74 benign apps mistakenly

detected as malware by RGDroid. These apps usually use

dangerous permissions and sensitive APIs to perform spe-

cific functions. However, some seemingly malicious behavior

actually matches the behavior described by the apps. For

example, the main function of an app is social media and

video chats. It is able to access fine location and record

audio, which is malicious behavior in other apps. Ignoring

the feature declaimed in the app itself leads RGDroid to

flag benign apps as malware mistakenly. We also analyze

malware apps not detected by RGDroid. We find that 9%

of the false negatives cannot be parsed correctly. The FCGs

of these samples contain less than 25 nodes, which means

RGDroid cannot properly build the function call graph due to

dynamic loading and encryption. We sample 10 apps from 79

false negatives for further analysis. We find 8 apps are adware

which does not perform clearly malicious activities. And the

other two apps did not perform malicious behavior and may

have been mislabeled as malware.

C. RQ2: Robustness against Adversarial Attack

In this section, we evaluate the robustness of RGDroid under

the following graph adversarial attacks.

• HRAT [9] performs four types of graph modification

operations and uses reinforcement learning (RL) to op-

timize the attack process. It is designed for MalScan

and MaMaDroid. It does not consider the GNN-based

model. Therefore, according to the attack framework

described in the paper and the source code, we implement

the attack against the GCN-based classifier. Specifically,

in order to select optimal edges or nodes to conduct

the modifications on the graph, we use the graph edge

gradient obtained from the GCN model to guide selection.

And the state in RL framework is the graph embedding

extracted from the GCN model.

• ReWatt [19] is an black-box attack for the graph classi-

fication task. ReWatt uses a graph rewiring operation to

perform the attack and utilizes deep reinforcement learn-

ing to learn the strategy to attack effectively attack. The

attacker uses GCN to learn node and edge embeddings,

which are used as input to Policy Networks to make

decisions about the next action. We change it to the white-

box attack and the attacker can directly use the target

model to obtain node and edge embeddings. Moreover,

we modified the rewiring operation to suit the malware

scenario.

• Gradient-based [21] means a gradient-based attack

which greedily adds or deletes edges based on the magni-

tude computed input gradient. In this attack, we only add

edges since deleting edges may break app functionality.

• GRABNEL [20] is a novel Bayesian optimisation-based

black-box attack method for graph classification models.

645

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 01,2023 at 05:28:11 UTC from IEEE Xplore. Restrictions apply.

TABLE III
ASRSa OF FOUR GRAPH ATTACK TOWARDS SIX DIFFERENT DETECTORS

Algorithm HRAT ReWatt GRABNEL Gradient-based
MaMadroid 70.7% - - -

Malscan 77.7% - - -
Baseline GCN 54.2% 30.0% 15.1% 15.0%

AGCN 50.6% 35% 17.3% 14.7%
AGCN (Single) 17.4% 5.7% 3.0% 4.4%

RGDroid 6.1% 2.3% 1.0% 1.2%
aLower ASR means better defense against adversarial attacks.

We implemented it completely according to the source

code.

For comparison robustness with other FCG-based methods, we

also implemented HRAT attack on MaMadroid and Malscan.

Since the other three attacks are proposed for GNN-based

models, we do not consider these attacks on MaMadroid and

Malscan. For Malscan, we get the entire source code of HRAT

attack and use the same configuration as HRAT attack paper.

But for MaMadroid, the code is not provided. We implemente

HRAT attack on MaMadroid as described in its paper.

1) Evaluation Measures: To evaluate the effectiveness of

the attacks, we use the attack success rates as our evaluation

metric, which are defined as follows.

ASR = Ns/N

where N is the number of malware correctly predicted by the

classifier, Ns is the number of malware that can successfully

deceive the classifier after the attacker modifies its FCG. Since

modifying misclassified malware makes no sense, we only

use the samples that RGDroid predicted correctly in Experi-

ment IV-B. Considering the cost of the attacker’s attack, we set

the maximum number of modifications as 500 for all the above

attacks, which is the same as the HRAT [9] setting. Here, we

mainly consider the defense effectiveness of the feature space.

For attacks in the real world, not all modified FCGs can be

repackaged due to the anti-repackage protection [30], and not

all repackaged apps can run successfully. Therefore, the attack

success rate shown in our experiments is higher than the actual

attack success rate.

2) Result: From Table III, the ASR of RGdroid is lower

than other methods, which indicates that RGdroid is more

resilient against the graph structural attack compared to the

other methods.

We can see that the performance of MaMadroid [2] and

Malscan [1] drop significantly under HRAT [9] attack. For Ma-

Madroid and Malscan, the ASR under HRAT attack is 70.7%

and 77.7% respectively. For Malscan, the reason is that the

centrality analysis which Malscan use to characterize the apps’

malicious behaviors contains simple semantic information and

can be easily changed. For example, when an attacker adds

one node to the graph, the number of nodes increases, and

degree centrality decreases. When an attacker adds one edge

or removes one edge between one node and another node, the

degree centrality will change. For MaMadroid, the function

call probability can be changed by attackers. When inserting

one edge from state i to state j, the function call probability

between i and j increases and vice versa for deleting one edge.

When adding or removing nodes i from graph, corresponding

state calls probability can also be changed.
RGDroid can enhance security compared to the original

GCN classifier and make attackers harder to evade detection.

The ASR has been greatly reduced, especially in the scenarios

of HRAT attack and ReWatt attack. The ASR decreased from

50.6% to 6.1% under HRAT attack and decreased from 35.0%

to 2.3% under ReWatt attack. For Gradient-based attack, its

ASR decreased from 14.7% to 1.2% compared to the ASR of

AGCN. GRABNEL attack only achieves 1.0% ASR because

it is a black-box attack and has not enough information about

the model. And our defense can make the ASR of GRABNEL

decrease from 17.3% to 1.0% because we remove most added

useless edges. Comparing the ASR of Baseline GCN and GCN

with API Embedding (AGCN) under the Rewiring attack, the

ASR of AGCN is 35% which is higher than Baseline GCN.

The reason is that the node attribute of AGCN contains more

information than the node attribute of GCN. Rewiring which

connects a node to its original target node through an unrelated

intermediate node makes node features of AGCN contain

more noise according to the aggregation scheme. When using

multiple graphs as input, the ASR is reduced by about half

for the all four attacks. The results demonstrate that graphs

generated by different communities are more difficult to attack.

Only the edge inserted by the attacker is not detected and

eliminated by the all three communities, can the attacker

successful evade detection.
Among these attacks, the HRAT attack is the most effective

strategy, since they use four types of graph modifications to

attack through reinforcement learning framework to optimize

the structural attack process. Compared with the other three

attacks, HRAT can achieve higher ASR on all classifiers. But,

for the strongest attack HRAT, RGDroid still achieves good

defensive performance.
Answer to RQ2: RGDroid is more resilient to adversarial

attacks compared to MaMadroid and MalScan.
3) Attack Analysis: We analyze how an attacker affects our

feature extraction process. We consider the four modification

operations mentioned in the section II-A.

• For adding node vnew ∈ C and its caller vbeg , we can

see that adding a user defined function can not impact

the feature of node vbeg according to (4). Because the

initial feature of vnew is a vector of all zeros and will

not change in subsequent updates. Moreover, RGDroid

ignores the normalization term cji. Although adding node

changes the degree of vnew, the final feature can not be

changed.

• When an attacker deletes one node vtar ∈ C, the

callers and callees of vtar will lost. But to preserve

the functionality, those callers invoke the callees of vtar
by integrating the code of vtar. Therefore, the callees

information can be propagated to the caller directly and

the caller still aggregates valid information.

646

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 01,2023 at 05:28:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. The Cumulative Distribution Function (CDF) of the proportion of
edges connecting different communities

• As for adding edge between vbeg and vend, it can be

the main operation that affects the aggregation of node

features. We analyze the impact of community detection

on adversarial attacks. From an attacker’s perspective, an

effective modification tends to modify the edge or node

that can make the feature perturb to the greatest extent.

An attacker usually uses gradients to select the most

influential edges or nodes for modification. We first gen-

erated 200 adversarial samples using the gradient-based

graph attack [21]. As discovered by analysis, most of the

added edges connect different communities. We counted

the proportion of edges connecting different communities

to the total number of added edges. The cumulative

distribution function (CDF) of proportion is given in

Figure 7. Nearly 80% of the added edges are between

communities. These changes in the graph structure can

affect the node aggregation thus the representation of the

entire graph. RGDroid can mitigate the effect on the final

graph embedding by removing these edges.

• As for rewiring, it can be split into two steps. An attacker

first removes an edge between vbeg and vtar and add a

new edge from intermediate node vmid to vtar, and from

vbeg to vmid. Similar to adding edges, rewiring operation

uses the gradient to find the edge that maximizes the loss.

Therefore, RGDroid is also effective against rewiring.

4) Case Study: To better illustrate the capability of

RGDroid, we analyzed an interesting case using a real-

world sample. Specifically, Figure 8 shows the mali-

cious part of the FCG extracted from a malware with

package name ccvimapgames.ccbikinihunt which steals de-

vice information (IMEI, IMSI, etc). The green nodes

and the edges between them represent the path of

the malware to obtain device information. The AdsCon-
nect.startConnect() call DeviceInfo.getInstance() and the Devi-
ceInfo.getInstance() call TelephonyManager.getDeviceId() and
TelephonyManager.getSubscriberId() to get device informa-

tion. The blue nodes and the edges between them show Ad-
sConnect.startConnect() call AdsConnect.parseHttpConfig() to

call

call

call

cal
l

call

ca
ll

call

ca
ll

ca
ll

call

call

ca
ll

call

callcall

call

call

call

call

call

call

call

call

call

call

call

call

ca
ll

ca
ll

call

call call

call

call

call

ca
ll call

call

call

ca
ll

6…

6…

7…

4…

2…

7…

6…

25

5… 7…

2…
5…

4…

Fig. 8. The malicious part of a real malware (ccvimapgames.ccbikinihunt)

parse and configure http parameters and call DefaultHttp-
Client.execute to send device information to the address as-

signed by malware developer. RGDroid recognizes this app

as malware according to the functionality of the API and the

calling relationship between methods. To deceive RGDroid, an

attacker adds a fake call from AdsConnect.parseHttpConfig()
to analytics.b.a(). Then the attacker adds dozens of calls

from analytics.b.a() to benign part vimapgames.bikinihunt.
The malicious features can be diluted by connecting to

the benign part. There is only one edge between AdsCon-
nect.parseHttpConfig() and analytics.b.a(). However, these two

methods are closely connected to the nodes in their respective

communities. Therefore, RGDroid can remove the fake call

between these two methods by community detection, which

eliminates the effect of benign part on the malicious features.

D. RQ3: Runtime Overhead

In this phase, we evaluate the runtime overhead of RGDroid.

As aforementioned, RGDroid is mainly composed of three

parts to complete the detection which are Graph-based Pro-

gram Representation, Graph Partition, Learning and Detection.

We introduce the corresponding overhead in RGDroid.

Graph-based Program Representation: RGDroid first dis-

tills the program semantics of an app into a function call

graph by static analysis. It needs to take about 19.7 seconds to

complete the static analysis on average. This step is the most

time-consuming phase of all the steps in RGDroid.

Graph Partition: After generating the call graph, we then

perform three community detection algorithms to split the

entire graph into multiple subgraphs. The average runtime

overhead is 1.1s.

Learning and Detection We first learn the model param-

eters using the training data. The training phase takes less

than 1.5 hours. After training, we are able to obtain the

trained model to extract features and classify them. Given the

subgraphs, feature extraction and classification are performed

within the same periods. This phase consumes the least run-

time overhead, it only requires about 0.0079s seconds to dis-

tinguish an input as either benign or malicious in GPU-enable

and 0.01s in CPU. We also compare the runtime overhead of

RGDroid with MaMadroid, and MalScan. MaMadroid takes

647

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 01,2023 at 05:28:11 UTC from IEEE Xplore. Restrictions apply.

1.36 seconds on average to complete the feature extraction and

classification and Malscan takes 0.131s on average. Compared

to these methods, RGDroid which is based on GCN does not

add much runtime overhead. In other words, RGDroid gains

accuracy and robustness with less cost.

Answer to RQ3: RGDroid achieves a more efficient mal-

ware detection than MaMaDroid and MalScan.

V. RELATED WORK

Automated Android Malware Detection. Many proposed

approaches on Android malware detection rely on syntax fea-

tures [3], [8], [11], [13], [31]–[35]. Arp et al. [3] extract broad

features, such as permissions, filtered intents and API calls,

and embed them in a vector to classify malware. However, they

only use frequency information and ignore the program seman-

tics. In addition, the method can be evaded by attacks [36].

Aafer et al. [5] conduct a thorough analysis to extract certain

API calls used by malware and perform classification based

on API frequency. The detection performance may be affected

due to its use of specific calls.

To complete more effective Android malware detection,

there are many graph-based approaches proposed [1], [2],

[4], [14]–[17], [37]–[40]. Zou et al. [17] combines the high

accuracy of traditional graph-based methods with the high

scalability of social-network-analysis to detect malware. Wu et
al. [37] design a new technique to discover the most suspicious

part of covert malware by analyzing the homophily of a call

graph. Cai et al. [38] propose the concept of enhanced function

call graphs and develop a GCN-based algorithm to obtain

vector representations of E-FCGs. Wu et al. [41] proposed

a GCN-based algorithm and weighted mechanism to detect

malware and find malicious nodes implied in the Android

application function call graph. Gao et al. [4] map apps and

Android APIs into a large heterogeneous graph and solve the

node classification task based on the Graph Convolutional

Network (GCN). However, these methods do not consider

the robustness against the graph adversarial attack. Zhang et
al. [39] propose APIGraph to slow down the classifier aging.

The API embedding obtained in APIGraph is only used for

clustering, and similar APIs are used as a class to enhance the

sustainability of classifiers under evolved malware samples.

However, these classifiers do not fully utilize the semantic

information contained in the embedding. RGDroid is able

to use the API embedding as node features to enhance the

GCN-based classifier in order to take full advantage of API

embeddings.

Adversarial Example Defense. Chen et al. [42] consider

different importance of the features associated with their

contributions to the classification problem as well as their

manipulation costs, and present a novel feature selection

method to make the classifier harder to be evaded. Li et
al. [12] employ a similarity constraint to squeeze the room

for adversarial examples and propose a new VAE (variational

autoencoder) to detect malware. Li et al. [11] propose a new

mixture of attacks by combining multiple attack methods and

studying the usefulness of ensemble for both the defender and

the attacker in the context of adversarial malware detection.

But these methods only consider the detectors which rest on a

set of syntax-based features (i.e., permissions, filtered intents,

API calls, and new instances) extracted from the Android apps.

Each app is usually represented by a binary feature vector.

Therefore, these defense mechanisms can not be applied to the

graph-based methods which extract features from the graph.

Different from the existing works, in this paper, We consider

defenses against graph structural attacks in Android malware

detection.

VI. LIMITATIONS

FCG Extraction. In this paper, our static analysis is imple-

mented by leveraging FlowDroid [43]. To reduce the runtime

overhead caused by our constructed call graph, we can conduct

a low-cost program analysis by leveraging Androguard which

is a context- and flow-insensitive analysis. Our FCG is con-

structed based on the Dalvik code. Thus our approach would

miss the malicious behaviors implemented in native code.

However, other analysis frameworks [44] can help us address

this limitation by constructing the FCG of the native code. We

plan to use advanced program analysis to generate a suitable

call graph to achieve the balance between the efficiency and

effectiveness on detecting malware.

Obfuscations. Similar to any static analysis approach, our

approach is vulnerable to dynamic loading and encryption. An

app can loads a library into memory at runtime. If a malicious

payload is hidden in such a library, our methods can not detect

it effectively. As for encryption, packers can protect apps

by using encryption techniques to hide the actual Dex code.

We can use some unpacker tools such as PackerGrind [45]

to recover the actual Dex files. Then the call graph can be

extracted from actual Dex files.

VII. CONCLUSION

In this paper, we propose a novel Android malware detec-

tion system, RGDroid, which can accurately detect Android

malware and defend against adversarial attacks. We combine

API information and structural information to detect malware

effectively. To defend against adversarial attacks, we reduce

the connectivity of different functional parts to minimize

adversarial perturbations. The promising experiments demon-

strate our model’s advantage in accuracy and robustness.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their valuable feedback to improve our manuscript. This

work is partially supported by the National Key Research and

Development Program of China (No. 2021YFB3101402) and

Shanghai Pujiang Program (No. 22PJ1405700). We especially

thank Ant Group for the support of this research within the

SJTU-Ant Security Research Centre.

648

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 01,2023 at 05:28:11 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Wu, X. Li, D. Zou, W. Yang, X. Zhang, and H. Jin, “Malscan: Fast
market-wide mobile malware scanning by social-network centrality anal-
ysis,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2019, pp. 139–150.

[2] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by
building markov chains of behavioral models (extended version),” ACM
Trans. Priv. Secur., vol. 22, no. 2, apr 2019. [Online]. Available:
https://doi.org/10.1145/3313391

[3] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of android malware in your
pocket,” in NDSS, 2014.

[4] H. Gao, S. Cheng, and W. Zhang, “Gdroid: Android malware detection
and classification with graph convolutional network,” Comput. Secur.,
vol. 106, p. 102264, 2021.

[5] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features
for robust malware detection in android,” in SecureComm, 2013.

[6] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4maldroid: A deep learning
framework for android malware detection based on linux kernel system
call graphs,” 2016 IEEE/WIC/ACM International Conference on Web
Intelligence Workshops (WIW), pp. 104–111, 2016.

[7] A. Narayanan, Y. Liu, L. Chen, and J. Liu, “Adaptive and scalable
android malware detection through online learning,” 2016 International
Joint Conference on Neural Networks (IJCNN), pp. 2484–2491, 2016.

[8] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep
learning method for android malware detection using various features,”
IEEE Transactions on Information Forensics and Security, vol. 14, pp.
773–788, 2019.

[9] K. Zhao, H. Zhou, Y. Zhu, X. Zhan, K. Zhou, J. Li, L. Yu, W. Yuan,
and X. Luo, “Structural attack against graph based android malware
detection,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 3218–3235.
[Online]. Available: https://doi.org/10.1145/3460120.3485387

[10] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, “Android hiv: A study of repackaging malware for evading
machine-learning detection,” IEEE Transactions on Information Foren-
sics and Security, vol. 15, pp. 987–1001, 2020.

[11] D. Li and Q. Li, “Adversarial deep ensemble: Evasion attacks and
defenses for malware detection,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 3886–3900, 2020.

[12] H. Li, S. Zhou, W. Yuan, X. Luo, C. Gao, and S. Chen, “Robust android
malware detection against adversarial example attacks,” Proceedings of
the Web Conference 2021, 2021.

[13] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mcdaniel,
“Adversarial examples for malware detection,” in ESORICS, 2017.

[14] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android mal-
ware classification using weighted contextual api dependency graphs,”
in Proceedings of the 2014 ACM SIGSAC conference on computer and
communications security, 2014, pp. 1105–1116.

[15] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware through static analysis,” in Proceed-
ings of the 22nd ACM SIGSOFT international symposium on foundations
of software engineering, 2014, pp. 576–587.

[16] M. Fan, J. Liu, X. Luo, K. Chen, T. Chen, Z. Tian, X. Zhang, Q. Zheng,
and T. Liu, “Frequent subgraph based familial classification of android
malware,” in 2016 IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2016, pp. 24–35.

[17] D. Zou, Y. Wu, S. Yang, A. Chauhan, W. Yang, J. Zhong, S. Dou,
and H. Jin, “Intdroid: Android malware detection based on api intimacy
analysis,” ACM Trans. Softw. Eng. Methodol., vol. 30, pp. 39:1–39:32,
2021.

[18] L. Babai and E. M. Luks, “Canonical labeling of graphs,” Proceedings
of the fifteenth annual ACM symposium on Theory of computing, 1983.

[19] Y. Ma, S. Wang, T. Derr, L. Wu, and J. Tang, “Graph adversarial attack
via rewiring,” Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 2021.

[20] X. Wan, H. Kenlay, B. Ru, A. Blaas, M. A. Osborne, and X. Dong,
“Adversarial attacks on graph classification via bayesian optimisation,”
ArXiv, vol. abs/2111.02842, 2021.

[21] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks
on neural networks for graph data,” Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2018.

[22] T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” ArXiv, vol. abs/1609.02907, 2017.

[23] A. Bordes, N. Usunier, A. Garcı́a-Durán, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in NIPS,
2013.

[24] Y. Qu, X. Guan, Q. Zheng, T. Liu, L. Wang, Y. Hou, and Z. J.
Yang, “Exploring community structure of software call graph and its
applications in class cohesion measurement,” J. Syst. Softw., vol. 108,
pp. 193–210, 2015.

[25] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, p. 10008, 2008.

[26] M. E. J. Newman, “Finding community structure in networks using the
eigenvectors of matrices.” Physical review. E, Statistical, nonlinear, and
soft matter physics, vol. 74 3 Pt 2, p. 036104, 2006.

[27] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, ser. MSR ’16. New York, NY, USA: ACM, 2016, pp. 468–
471. [Online]. Available: http://doi.acm.org/10.1145/2901739.2903508

[28] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” Proceedings of the National
Academy of Sciences, vol. 105, pp. 1118 – 1123, 2008.

[29] U. N. Raghavan, R. Albert, and S. R. T. Kumara, “Near linear time
algorithm to detect community structures in large-scale networks.”
Physical review. E, Statistical, nonlinear, and soft matter physics, vol.
76 3 Pt 2, p. 036106, 2007.

[30] X. Zhan, L. Fan, S. Chen, F. Wu, T. Liu, X. Luo, and Y. Liu, “Atvhunter:
Reliable version detection of third-party libraries for vulnerability iden-
tification in android applications,” 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pp. 1695–1707, 2021.

[31] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy, “Using probabilistic generative models for ranking risks
of android apps,” in Proceedings of the 2012 ACM conference on
Computer and communications security, 2012, pp. 241–252.

[32] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Exploring
permission-induced risk in android applications for malicious application
detection,” IEEE Transactions on Information Forensics and Security,
vol. 9, no. 11, pp. 1869–1882, 2014.

[33] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” ArXiv, vol. abs/1801.01681, 2018.

[34] J. M. S. Miguel, M. Kline, R. A. Hallman, S. M. Slayback, A. Rogers,
and S. S. F. Chang, “Aggregated machine learning on indicators of
compromise in android devices,” Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018.

[35] K. Xu, Y. Li, R. H. Deng, K. Chen, and J. Xu, “Droidevolver: Self-
evolving android malware detection system,” 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 47–62, 2019.

[36] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial examples for malware detection,” in European symposium
on research in computer security. Springer, 2017, pp. 62–79.

[37] Y. Wu, D. Zou, W. Yang, X. Li, and H. Jin, “Homdroid: detect-
ing android covert malware by social-network homophily analysis,”
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021.

[38] M. Cai, Y. Jiang, C. Gao, H. Li, and W. Yuan, “Learning features
from enhanced function call graphs for android malware detection,”
Neurocomputing, vol. 423, pp. 301–307, 2021.

[39] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang,
M. Zhang, and M. Yang, Enhancing State-of-the-Art Classifiers with
API Semantics to Detect Evolved Android Malware. New York,
NY, USA: Association for Computing Machinery, 2020, p. 757–770.
[Online]. Available: https://doi.org/10.1145/3372297.3417291

[40] S. Hou, Y. Fan, Y. Zhang, Y. Ye, J. Lei, W. Wan, J. Wang, Q. Xiong, and
F. Shao, “αcyber: Enhancing robustness of android malware detection
system against adversarial attacks on heterogeneous graph based model,”
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019.

649

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 01,2023 at 05:28:11 UTC from IEEE Xplore. Restrictions apply.

[41] Z. Ma, H. Ge, Z. Wang, Y. Liu, and X. Liu, “Droidetec: Android malware
detection and malicious code localization through deep learning,” ArXiv,
vol. abs/2002.03594, 2020.

[42] L. Chen, S. Hou, and Y. Ye, “Securedroid: Enhancing security of
machine learning-based detection against adversarial android malware
attacks,” Proceedings of the 33rd Annual Computer Security Applica-
tions Conference, 2017.

[43] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. Mcdaniel, “Flowdroid: precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2014.

[44] J. Samhi, J. Gao, N. Daoudi, P. Graux, H. Hoyez, X. Sun, K. Allix, T. F.
Bissyand’e, and J. Klein, “Jucify: A step towards android code unifica-
tion for enhanced static analysis,” 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), pp. 1232–1244, 2022.

[45] L. Xue, H. Zhou, X. Luo, L. Yu, D. Wu, Y. Zhou, and X. Ma,
“Packergrind: An adaptive unpacking system for android apps,” IEEE
Transactions on Software Engineering, vol. 48, pp. 551–570, 2022.

650

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 01,2023 at 05:28:11 UTC from IEEE Xplore. Restrictions apply.

