
iService: Detecting and Evaluating the Impact of Confused
Deputy Problem in AppleOS

Yizhuo Wang, Yikun Hu, Xuangan Xiao, Dawu Gu
Shanghai Jiao Tong University

Shanghai, China
{mr.wang-yz,yikunh,xgxiao,dwgu}@sjtu.edu.cn

ABSTRACT

Confused deputy problem is a specific type of privilege escalation.
It happens when a program tricks another more privileged one into
misusing its authority. On AppleOS, system services are adopted to
perform privileged operations when receiving inter-process com-
munication (IPC) request from a user process. The confused deputy
vulnerabilities may result if system services overlook the checking
of IPC input. Unfortunately, it is tough to identify such vulnerabili-
ties, which requires to understand the closed-source system services
and private frameworks of the complex AppleOS by unraveling the
dependencies in binaries.

To this end, we propose iService, a systematic method to au-
tomatically detect and evaluate the impact of confused deputies
in AppleOS system services. Instead of looking for insecure IPC
clients, it focuses on sensitive operations performed by system
services, which might compromise the system if abused, ensuring
whether the IPC input is properly checked before the invocation of
those operations. Moreover, iService evaluates the impact of each
confused deputy based on i) how severity of the corresponding
sensitive operation if abused, and ii) to what extent the sensitive
operation could be controlled by external input. iService is ap-
plied to four versions of MacOS (10.14.3, 10.15.7, 11.4, and 12.4)
separately. It successfully discovers 11 confused deputies, five of
which are zero-day bugs and all of them have been fixed, with three
considered high risk. Furthermore, the five zero-day bugs have been
confirmed by Apple and assigned with CVE numbers to date.

CCS CONCEPTS

• Security and privacy→ Operating systems security.

KEYWORDS

AppleOS, confused deputy, privilege escalation, static analysis

ACM Reference Format:

YizhuoWang, YikunHu, Xuangan Xiao, DawuGu. 2022. iService: Detecting
and Evaluating the Impact of Confused Deputy Problem in AppleOS. In
Annual Computer Security Applications Conference (ACSAC ’22), December

* Yikun Hu and Dawu Gu are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’22, December 5–9, 2022, Austin, TX, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9759-9/22/12. . . $15.00
https://doi.org/10.1145/3564625.3568001

Permission
Checks

Input
Validations

Sensitive
Operations

System Service

Entry
Point

A

B

C

User Process

IPC
Client

IPC
request

restricted

privileged

Figure 1: IPC workflow in AppleOS.

5–9, 2022, Austin, TX, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3564625.3568001

1 INTRODUCTION

The confused deputy problem is a security issue where an unpriv-
ileged entity could perform actions, which should not have been
allowed, by misusing the authority of more privileged ones. Ap-
pleOS perform privileged operations with system services that
accept IPC request from unprivileged user processes. Despite the
strict access control mechanism, attackers could still escalate privi-
leges if system services overlook checking input from IPC requests.
However, it is difficult to identify such vulnerabilities in AppleOS,
because that requires reverse engineering at a large scale to un-
derstand the undocumented system services and Apple’s private
frameworks on which the services depend.

AppleOS relies on IPC to let restricted user process invoke sen-
sitive operations with privilege. As depicted in Figure 1, an IPC
request is proposed by the user process. After passing the protec-
tions, i.e., permission checks and input validations, the data carried
by the request (i.e., IPC input) is executed as parameters of the
sensitive operations. If system services lack such checks or check
the IPC request in an improper way, the confused deputy would
result.

IPC-based confused deputy vulnerabilities are not new. Unfor-
tunately, existing work cannot tackle the problems at its root. On
the one hand, existing work for confused deputy detection only
focuses on permission checks without diving into the input valida-
tions. Kobold [16] sets its sights on entitlements in third-party iOS
applications, which are used for permission checks, while it disre-
gards the contents of IPC request, i.e., how the input is validated.
Similarly, work on Android [1, 9, 19, 20, 22, 23, 31] mainly stud-
ies mis-configured issues of permission checks of system services.
On the other hand, fuzzing-based methods [13, 26] rely on crashes
caused by program inputs, while confused deputies are not memory
bugs but privilege escalation, which do not produce crashes.

In this paper, we propose iService, a systematic method to detect
and evaluate the impact of confused deputies on AppleOS in a static
manner. Essentially, confused deputies become harmful if they are

964

https://doi.org/10.1145/3564625.3568001
https://doi.org/10.1145/3564625.3568001
https://doi.org/10.1145/3564625.3568001

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yizhuo Wang, Yikun Hu, Xuangan Xiao, Dawu Gu

tricked into invoking sensitive operations with privilege. Therefore,
iService concentrates on those operations, checking whether the
IPC input reaching sensitive operations has been well validated.
iService takes four steps to achieve the goal: i) resolve function
calls using top-down type propagation, thereby generating the call
graph, ii) identify sensitive operations on the call graph, iii) per-
form sensitive operation-oriented dataflow analysis to identify data
dependencies between IPC inputs and sensitive operations, thereby
extracting input validations without fixed pattern, iv) evaluating
input validations to report confused deputies.

iService is applied to 439 system services of macOS 10.14.3,
10.15.7, 11.4 and 12.4, and discovered 28 services where the key
parameters of 53 sensitive operations are controllable by IPC inputs.
By extracting and evaluating the protections of these controllable
sensitive operations, iService reports 20 confused deputies due to
lacking proper permission checks or input validations.Wemanually
identified 11 of them that could be exploited, including arbitrary
file overwriting and commands execution. We have reported all of
them to Apple, and 5 of them are 0-day vulnerabilities, which are
confirmed with CVE numbers assigned.

In summary, this paper makes the following contributions:
• We present iService, the first systematic method to detect
and evaluate the impact of confused deputies on AppleOS.

• We perform top-down type propagation to statically resolve
function calls which are dynamically dispatched, thereby
identifying sensitive operations in system services.

• We propose a sensitive operation-oriented dataflow analysis
to identify data dependencies between IPC inputs and sen-
sitive operations, thereby extracting input validations with
no fixed patterns.

• We implement a prototype of iService and evaluate it with
439 system services in four AppleOS. iService discovered
11 confused deputies without proper permission checks or
input validations, which lead to privilege escalation. 5 of
them are confirmed with the CVE numbers assigned.

2 MOTIVATION AND OVERVIEW

In this section, we first unravel the limitations of existing work and
corresponding challenges with a motivating example. Then, we
explain the basic idea of iService and the overview of its design.

2.1 Motivating Example and Challenges

Figure 2 provides an example of a confused deputy vulnerability,
which allows a malicious program to overwrite arbitrary files for
root privilege. The system service in Figure 2 accepts a dictionary
req as input and finally performs two operations in sequence, i.e.,
manipulating file permissions (Line 17) and moving files (Line 18).
The two operations are considered to be sensitive operations
because they are functions requiring elevated privileges to execute [2].

Since there is no validation to restrict the arguments used in
the two sensitive operations, the service can be abused to ma-
nipulate file permissions and overwrite files. Specifically, if the
target file already exists, the service fails to move the file, but it
changes the permission of the source file. Then, a confused deputy
vulnerability results because there is a lack of checks for the ser-
vice to validate whether dst (Line 15) has existed before moving

User Process System Service Process
1 listener = xpc_connection_create_mach_service(

"com.apple.osanalytics.osanalyticshelper",0,1);
2 service = objc_msgSend(&OBJC_CLASS___OSAXPCServices,"init");
3 xpc_connection_set_event_handler(listener, &block1);

Init

4 if (xpc_get_type(conn) == XPC_TYPE_CONNECTION){
5 xpc_connection_set_event_handler(conn, &block2);

handler_1

6 service=objc_loadWeakRetained(block2->lvar3);
7 if (xpc_get_type(req) == XPC_TYPE_DICTIONARY){
8 pid = xpc_connection_get_pid(block2->lvar2);
9 objc_msgSend(service,"serviceRequest:fromPID:forReply:",

req,pid,reply);}

handler_2

10 op = xpc_dictionary_get_uint64(req, "operation");
11 switch (op){
12 case 6:
13 ret = objc_msgSend(&OBJC_CLASS_$_OSALogHelper,

"createForSubmissionWithXPCRequest:forReply:",req,reply);

dispatcher

14 log = objc_msgSend(req,"objectForKeyedSubscript:",
CFSTR("LogType"));

15 dst = objc_msgSend(req, "objectForKeyedSubscript:",
CFSTR("override-filePath"));

16 src = objc_msgSend(req, "objectForKeyedSubscript:",
CFSTR("move-file"));

/* Eliminate a lot of tedious processes */
17 fchown(src,-1,250u) && fchmod(src,0660);
18 objc_msgSend(fileMgr, "moveItemAtPath:toPath:error:",

src, dst, &err);

call

call

call

through multiple calls

A

B

B

C

C

xpc_connection_send_message(
conn, req);

conn <= service name

Set req of xpc_dictionary
"operation": 6
"move-file": src
"override-file": dst
"LogType": don’t care

26

19 block1.isa = _NSConcreteStackBlock;
20 block1.flags = 3254779904LL;
21 block1.invoke = &handler_1;
22 block1.descriptor = &stru_1000041A0;
23 block1.lvar1 = service;
24 objc_copyWeak(block1.lvar2,service);

25 block2.isa = _NSConcreteStackBlock;
26 block2.flags = 3254779904LL;
27 block2.invoke = sub_10000281F;
28 block2.descriptor = &stru_100004170;
29 block2.lvar1 = block1->lvar1;
30 objc_copyWeak(block2.lvar3,

block1.lvar2);
31 block2.lvar2 = conn;

Layout of block1

Layout of block2

Arbitray file overwriting
to src if fail to move

Figure 2: CVE-2021-30774, a confused deputy which allows a

malicious program to gain root privilege.

src (Line 16). Hence, to detect such vulnerability, the main task is to
determine whether the key parameters of sensitive operations are
well-validated. That faces two challenges: i) resolving Objective-C
messages, and ii) identifying sensitive input validations.

2.1.1 Challenge 1: Resolving Objective-C Messages. Most
of the sensitive operations in this paper are function invocations
in Objective-C, performed via an indirect call, namely message
passing. It is implemented by objc_msgSend, a dynamic dispatch
function, such as Line 18 in Figure 2. Therefore, to identify sensitive
operations, it is necessary to find the proper function to invoke, i.e.,
resolving message passing.

Nevertheless, resolving such a dynamic process is difficult for
static methods that require to find the type of the object to which
the message is passed. Existing work performs backward slic-
ing [15, 18], which cannot find the type propagated interprocedu-
rally. For example, the type of service, which is the first parameter
of objc_msgSend (Line 9), is defined in another function (Line 2)
and propagated across functions via structure fields block1.lvar2
and block2.lvar3. It is hard for backward slicing to figure out its
type, thus cannot resolve the message in Line 9.

2.1.2 Challenge 2: Identifying Sensitive Input Validations.
On the one hand, Input validations have no fixed pattern like per-
mission checks and vary for different inputs. On the other hand, a
lack of validations for inputs on which sensitive operations depend,
namely sensitive input validations, could lead to confused deputies.
Therefore, to precisely detect confused deputies, it is necessary to
find all sensitive input validations without over-approximation.

Existing work focuses on conditional comparison or error han-
dling instructions. However, it does not consider whether sensitive
operations depend on these instructions, which causes false pos-
itives [1, 9, 21, 33]. For example, existing work considers a lack
of restrictions for log (Line 14), a field of IPC input req, thereby
reporting a confused deputy. It is a false positive because log is
irrelevant to any sensitive operation.

965

iService: Detecting and Evaluating the Impact of Confused Deputy Problem in AppleOS ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Evaluate Protections

Score Deputies

Confused Deputies
Discovery

Locate Sensitive Operations

Prune the Call Graph

Sensitive Operation-
based Pruning

2 4

Resolve Function Call

Call Graph Generation
1

Identify Entry Point

Top-down Type
Propagation

Call Graph Set

Function in
frameworks

Function
in services

Pruned Call
Graph Set

Function containing
sensitive operations

Data Dependence
Analysis

Generate Code
Property Graph

Protections Extraction
3

Report for
confused
deputy

Binaries

Services
and

frameworks

Extract Protections

Protections

IPC input
Protection

Figure 3: Overview of iService

2.2 Overview

To this end, we design iService, a static analysis framework to
detect confused deputies. Figure 3 depicts the workflow of iService,
which consists of four steps:

(1) Call Graph Generation. iService first identifies the start-
ing function (handler_1 in Figure 2), performs top-down
type propagation to resolve Objective-C messages (Chal-
lenge 1), and constructs a call graph.

(2) Sensitive Operation-based Pruning. iService then identi-
fies sensitive operations (Lines 17, 18) on the call graph and
prunes the call graph to filter out functions irrelevant to sen-
sitive operations, such as other functions called by function
dispatcher in the switch-case code block in Figure 2.

(3) Protections Extraction. iService generates the code prop-
erty graph [32] for functions in the pruned call graph, and
performs dataflow analysis to find data dependencies be-
tween the IPC input and key parameters of sensitive opera-
tions, such as 𝑟𝑒𝑞 → 𝑠𝑟𝑐 (Line 18 in Figure 2). Based on the
data dependencies, iService extracts protections, i.e., per-
mission checks and sensitive input validations (Challenge 2).

(4) Confused Deputies Discovery. iService evalutes protec-
tions extracted, and reports confused deputies based on a
scoring mechanism, which indicates the possibility of the
exploitability. For example, The service in Figure 2 scores 2 1

since it has no validation for src and dst used in sensitive
operations. Thus iService reports it as a confused deputy.

2.2.1 Top-down Type Propagation. To handle Challenge 1, we
propose the top-down type propagation, thereby inferring the type
of object receiving the messages. The insight is that the object re-
ceiving messages is commonly defined via class instantiate function
or return values of standard library functions, which introduce the
type information. Therefore, iService performs type propagation
in a top-down manner. Specifically, it introduces and propagates
types along the control flow of each function to infer types needed
in the call site. After resolving a function call, iService passes the
type information in the caller’s context to the callee for further
propagation in the callee’s context.

2.2.2 Sensitive Operation-oriented Data Dependence Anal-
ysis. To solve Challenge 2, we propose a data dependence analysis
which is sensitive operation-oriented. The insight is that sensi-
tive input validations should restrict the value of input fields on
which the key parameters of sensitive operations depend. There-
fore, iService finds data dependencies between IPC inputs and key
parameters of sensitive operations via dataflow analysis. Based on
the data dependencies, iService identifies statements that restrict

1A lower score means weaker protection and therefore more likely to be exploited.

the dataflow between inputs and key parameters as sensitive input
validations without the requirement to specify a fixed pattern.

3 DESIGN

In this section, we explains the four steps of iService in details. By
performing type propagation, iService resolves function calls and
generates the call graph of the system service (§ 3.1). It then locates
sensitive operations on the call graph and pruned the call graph
based on them (§ 3.2). To extract protections on the pruned call
graph, i.e., permission checks and sensitive input validations, iSer-
vice performs data dependence analysis (§ 3.3). Finally, it evaluates
protections and reports confused deputies (§ 3.4).

3.1 Call Graph Generation

iService recovers call relationships and generates the call graph
of the service binary in a top-down manner. It first identifies the
IPC entry point of the binary, which is the function to accept and
handle the IPC request (§ 3.1.1). iService then resolves function
calls in the entry point and its callees iteratively, thereby generating
the call graph starting from the entry point. Specifically, iService
performs top-down type propagation to resolve functions invoked
via Objective-C messages (§ 3.1.2).

3.1.1 IPC Entry Points Identification. IPC entry points are the
interface functions that an Apple system service exposes to user-
space programs, which handle IPC requests and are the essential
starting points of system service analysis and bug detection. iSer-
vice identifies entry points of the most used IPC mechanism in
AppleOS, called XPC, which has two types of implementations, i.e.,
C-based XPC and Objective-C-based NSXPC.

C-based XPC entry points are set by the function called
xpc_connection_set_event_handler. This function accepts two
parameters, the first is the listener of the service, and the second
is a structure, namely StackBlock. The structure has a function
pointer field that points to the IPC entry point. Take Figure 2 as an
example, iService first finds the listener of the service via create
related APIs in Line 1. It then slices forward to find the function
used to set the event handler in Line 3. By recovering the function
pointer field in Line 21, iService identify the entry point which is
labeled as handler_1 in Lines 4, 5.

NSXPC entry points are exported methods of the delegate class
of the remote procedure call mechanism. Therefore, iService finds
the delegate class and dumps its exported methods as entry points.
In details, iService first identifies the NSXPCListener instance, to
which the service name and delegate instance bind. It then analyzes
the method listener:shouldAcceptNewConnection: of the del-
egate instance, which is used to authenticate the IPC client and
set the connection. iService identifies exported object set in the

966

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yizhuo Wang, Yikun Hu, Xuangan Xiao, Dawu Gu

1 obj1 = objc_msgSend(&OBJC_CLASS___OSAXPCServices, "init");
2 block1.isa = _NSConcreteStackBlock;
3 block1.invoke = &handler_1;
4 objc_copyWeak(block1.lvar2, obj1);
5 xpc_connection_set_event_handler(listener, &block1);

Init

6 if (xpc_get_type(conn) == XPC_TYPE_CONNECTION){
7 block2.isa = _NSConcreteStackBlock;
8 block2.invoke = &handler_2;
9 objc_copyWeak(block2.lvar3, block1.lvar2);
10 xpc_connection_set_event_handler(conn, &block2);

handler_1

11 obj2 = objc_loadWeakRetained(block2->lvar3);
12 if (xpc_get_type(req) == XPC_TYPE_DICTIONARY){
13 objc_msgSend(obj2,“serviceRequest:fromPID:forReply:”,

req,pid,reply);}

handler_2

call

call

Statement levelInstruction level

Type propagation:

block1.lvar2obj1 block2.lvar3block1.lvar2 obj2block2.lvar3OSAXPCServices

14 mov rax,
cs:__NSConcreteStackBlock_ptr

...
15 mov [r15-28h], rax ; block1
16 mov rdi, r15 ; to: &block1+28h
17 mov rsi, r12 ; from: obj1
18 call _objc_copyWeak

19 mov rbx, rdi; parameter block1
...
20 mov rax,

cs:__NSConcreteStackBlock_ptr
21 mov [r14-30h], rax ; block2
...
22 add rbx, 28h
23 mov rdi, r14 ;to: &block2+30h
24 mov rsi, rbx ;from:&block1+28h
25 call _objc_copyWeak

Figure 4: An example to reveal the details of the type propa-

gation. iService lifts the binary from instruction level (left)

to statement level (right). The statements in the figure are

simplified for better understand.

method, and dumps its methods as the entry points of the service
by scanning corresponding sections of the binary.

3.1.2 Top-down Type Propagation. iService performs intra-
and inter-procedural type propagation in a top-down manner, and
resolves function calls based on the types inferred.

Intra-procedural type propagation. iService traverses each
functions along the control flow, and propagates type information
by maintaining a object-type map recording inferred types. It lifts
the binary from the instruction level to the statement level, where
objects is referenced by registers and memory address, as is shown
in Figure 4. During the traversal, iService updates the map by in-
troducing or propagating type information based on the statements’
operators and operands. Specifically, iService summarizes three
sources to introduce type information:

• Function parameters.When a statement uses a function pa-
rameter, the corresponding type is introduced.

• Function prototypes. Standard library and instantiation func-
tions have standard prototypes, which introduce types of
the return value and arguments.

• Recovered structures. Structures, such as StackBlock used to
invoke anonymous functions, introduce types of their fields
when corresponding fields are used.

The types are propagated via the following two ways:
• Assignment-like statements. iService assigns the type of the
source operand to the destination operand.

• Prototypes of private functions resolved. iService generates
prototypes of resolved private functions and infers types of
variables involved in other call sites.

Inter-procedural type propagation. iService performs type
propagation across functions in a top-down manner while building
the call graph. It first finishes intra-procedural type propagation
before the call site and then propagtes types into the callee. Specifi-
cally, iService propagates type information across functions via
i) arguments of function calls, and ii) StackBlock which is the
structure used to invoke an anonymous function.

Arguments passed at the call site propagate types into the callee’s
context. iService records arguments’ types at the call site into the
callee’s object-type map. The recorded type is introduced when a
statement uses an argument in the callee’s context.

As for StackBlock, iService recovers its layout and records
the types of its fields to the object-type map of the anonymous
function invoked by it. Its layout contains four fields of intrinsic
properties, and other fields store local variables as member vari-
ables of StackBlock. The definition and usage of StackBlock are
one-time, which means the assignment-like statements between
them build the layout. Therefore, iService identifies the statements
that declare and use StackBlock respectively, and labels the stack
variables assigned between the two statements as member variables.
After that, iService records the types of these member variables.
When thesemember variables are used in the anonymous function’s
context, iService introduces corresponding types.

Example. Take the type inferring of obj2 in Figure 4 as an
example. The instantiation function in Line 1 introduces the type
called OSAXPCServices and assigns it to the return value obj1.
iService identifies assignment-like statements (Lines 2-4), which
build the layout of block1, a StackBlock passed into the function
handler_1. The statement in Line 4 copies obj1 to block1.lvar2.
Therefore, iService infers that the type of block1.lvar2 is
OSAXPCServices as well. After that, iService finds that the type
of block2.lvar3 is the same as block1.lvar2 in Line 9. Simi-
larly, iService propagates the type of block2.lvar3 into function
handler_2 and inferred that the type of obj2 is OSAXPCServices
(Line 11). Knowing the type of object receiving the message (i.e.,
obj2), iService resolves the function call in Line 13.

3.2 Sensitive Operation-based pruning

iService identifies sensitive operations and prunes the call graph
based on them. It summarizes four categories of sensitive operations
based on Apple’s secure coding guide [2], as follows:

• File Permissions Manipulation. These operations may be
abused to downgrade the access control of system files for
further tempering, such as fchown and fchmod.

• System and User Files Manipulation. These operations
directly access files with the root privilege of system services,
which may be abused for arbitrary file overwriting, such as
reading, writing, moving, and deleting files.

• Preferences Management. User and application prefer-
ences are stored as key-value pairs. Operations, which are
used to get, set, synchronize, add and remove preferences,
may be abused for preference leakage or tampering via ma-
nipulated keys.

• ProcessesManagement. These operations can be abused to
execute specific files or commands with certain parameters
for code execution with root privileges, such as operations
on NSTask which represents a subprocess.

According to the four categories above, iService collects a total
of 40 C-APIs and 94 Objective-C APIs from Apple’s public docu-
ments, as listed in Appendix A. It also identifies the key parameters
of them, which can lead to privileges escalation if being controlled.

iService then prunes the call graph only to keep the functions
that directly or indirectly affect the execution of sensitive operations
for further analysis.

• Direct Effect. The functions in the function calling path di-
rectly affect sensitive operations. For example, function 𝑓𝑘 ,

967

iService: Detecting and Evaluating the Impact of Confused Deputy Problem in AppleOS ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Code snippet to move files
// func1
...
1 block.invoke = &func2
2 block.lvar1 = src;
3 block.lvar2 = objc_retain(dst);
...
4 call block.invoke // Invoke func2

// func2(*block)
...
5 obj = objc_msgSend(OSALog,"initWithFilepath:type:",

block->lvar1, block->lvar3);
6 ptr = *(_QWORD *)(block->lvar8 + 8);
7 *(_QWORD *)(ptr + 40) = obj;
...
8 arg1 = objc_msgSend(

*(id *)(*(_QWORD *)(block->lvar8 + 8) + 40LL),
"filepath");

9 arg2 = block->lvar2;
10 objc_msgSend(fm, "moveItemAtPath:toPath:error:",

arg1, agr2, &err);

1

2

3

4

5

6

7

8

9

10

Dataflow

Assign

Assign

Call

MsgSend

Assign

Assign

MsgSend

Assign

MsgSend

&func2 block_16

src block_32

Assign dst block_40

block_16

OSALog ”initWith
..." block_32 block_48 obj

block_32_8 ptr

obj ptr_40

block_32_8_40 ”filepath" arg1

block_40 arg2

fm ”moveItem
..." arg1 arg2 &err

Alias Relationships
Dataflow

Operator Node
Operand Node

Data Depend On

src block_32 obj ptr_40 block_32_8_40 arg1 dst block_40 arg2

Figure 5: An example for data dependence analysis. Code

in the left is lifted from binary for better understand. State-

ments in the right are parts of the code property graph. iS-

ervice constructs dataflow on the CPG, and extracts data

dependencies between input fields (e.g., src) and key param-

eters (e.g., arg1) of the sensitive operation in Line 10.

called via 𝑓𝑒𝑛𝑡𝑟𝑦 → 𝑓𝑖 → 𝑓𝑗 → 𝑓𝑘 , invokes the sensitive op-
eration, then 𝑓𝑒𝑛𝑡𝑟𝑦 , 𝑓𝑖 , and 𝑓𝑗 are considered directly affect
the sensitive operation.

• Indirect Effect. The functions called before the call sites of the
function calling path indirectly affects sensitive operations.
For example, in the body of function 𝑓𝑗 , if 𝑓𝑚 is called before
the call site of 𝑓𝑘 , then the 𝑓𝑚 is considered indirectly affect
the sensitive operations invoked in 𝑓𝑘 .

3.3 Protections Extraction

To extract protections, especially sensitive input validationswithout
fixed patterns, iService identifies data dependencies between IPC
inputs and key parameters of sensitive operations based on the in-
sight that sensitive input validations should restrict the dataflow be-
tween between them. Specifically, iService first generates code prop-
erty graph (CPG) [32] of functions in the pruned call graph(§ 3.3.1),
and then constructs interprocedural dataflow on the CPG(§ 3.3.2),
which is transformed into a graph-reachability problem [28, 29].
After that, it identifies protections of sensitive operations based on
the data dependencies(§ 3.3.3).

3.3.1 Generate Code PropertyGraph. The code property graph
is a joint data structure consisting of three levels of information,
i.e., abstract syntax, control flow, and both data and control depen-
dencies. Unlike the abstract syntax tree decomposed from source
code, the abstract syntax here refers to statements lifted from the
binary, and each statement contains an operator and its operands,
which are not nested. By adding control flow and both data and
control dependencies to the statements, iService generates the
code property graph to represent each function.

Specifically, a code property graph 𝐺 = (𝑉 , 𝐸, _, `) is a directed,
edge-labeled, attributed multigraph, where 𝑉 is a set of nodes rep-
resenting operators and operands of abstract syntax, 𝐸 is a set of
directed edges representing relationships among operators and
operands, control flow and dependencies among statements. Label-
ing function _ assigns labels to different types of edges, while `

assigns property value to each node according to the operator or
operand the node represents.

iService abstracts the following five operators as nodes to lift
the binary:

• Assignment. It assigns from a source operand to a destination
operand and introduces data dependencies.

• Arithmetic. It operates on source operands and stores the
result in the target operand.

• Call. It represents C-based functions that use several
operands as arguments and returns an operand as the return
value.

• MsgSend. It represents the Objective-C messages that use
several operands as its receiver, selector, and parameters
respectively, and returns an operand as the return value.

• Jump. It represents conditional instructions that introduce
control dependencies.

The operands of Assignment contain both registers and mem-
ory objects. The former are identified using register name and
Assignment’s location in the CPG. The latter are identified using
the base address and offset value computed in Arithmetic. For ex-
ample, block_32 in Figure 5 is the field at offset 32 in the structure
block. In addition, for ARC-related methods added by the compiler,
such as objc_retain, objc_copyweak, etc., iService also abstracts
them as Assignment because of their semantics, such as Statement 3
in Figure 5.

3.3.2 Construct Interprocedural Dataflow Based on CPG. To
identify data dependencies between inputs and key parameters of
sensitive operations, iService constructs interprocedural dataflow
based on CPG in a bottom-up manner. It traverses functions of
the pruned call graph in post-order, which ensures a function will
only be analyzed after all its callees are analyzed. For each func-
tion analyzed, iService generates a summary of data dependencies
among parameters and the return value, which represents the ef-
fects among them. Specifically, iService constructs dataflow among
operands according to the types of operator:

• Assignment and Arithmetic. iService connects the dataflow
directly between source and destination operands.

• MsgSend and Call. iService connects the dataflow among
parameters and the return value according to the callee’s
summary of data dependencies generated before.

Using such a summary-based method, iService constructs inter-
procedural dataflow without repeatedly and iteratively analyzing
each function invoked. As for the ring-shaped call relationship in
the callgraph, iService considers that the return value is affected
by all its parameters for soundiness.

To precisely capture the dataflow of fields of structured IPC input,
iService performs alias analysis to fulfill field-sensitive dataflow. It
identifies memory objects using the base address and offset value,
which are used as operands in Arithmetic, and the base address
are nested when used in multi-level pointers. From the Assignment
using memory objects as operands, iService records alias relation-
ships between source and destination operands. And the fields of
two operands with alias relationships are also labeled as alias if
they have the same offset.

Example. Take the data dependence analysis for sensitive opera-
tion (Line 10) in Figure 5 as an example. According to the bottom-up
manner, iService first generates summary of data dependencies of

968

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yizhuo Wang, Yikun Hu, Xuangan Xiao, Dawu Gu

functions invoked in Lines 5, 8, 10. After that, iService connects
dataflow among operands of corresponding MsgSend statements,
such as return value obj and parameter block_32 of Statement 5.
As for alias analysis, iService first identifies alias relationship be-
tween pointers block_32_8 and ptr in Statement 6, and then in-
fers the alias relationship between pointers block_32_8_40 and
ptr_40 because of the alias base and the same offset. Finally, iSer-
vice constructs the dataflow from src to arg1 and extracts the data
dependencies between them, which means the sensitive operation
in Line 10 is dependent on inputs.

3.3.3 Extract Protections. To extract protections of sensitive
operations, especially sensitive input validations without fixed pat-
terns, iService uses the extracted data dependencies and dataflow
on the CPG. The insight is that sensitive input validations are used
to restrict the parameters of sensitive operations dependent on
inputs. Therefore, iService traverses the CPG along each dataflow
from IPC inputs to parameters of sensitive operations. For each
Jump met, iService checks the data dependencies of its conditions.
If a condition has data dependencies with both IPC inputs and key
parameters of sensitive operations, iService identifies the Jump as
sensitive input validation.

3.4 Confused Deputy Discovery

To decided whether sensitive operations are well-protected, iS-
ervice evaluates permission checks (§ 3.4.1) and sensitive input
validations (§ 3.4.2) extracted above. iService further computes a
score to report a confused deputy and indicate the possibility of
exploitability (§ 3.4.3).

3.4.1 Evaluate Permission Checks. iService determines lack-
ing permission checks according to its inspection target and
method [8, 24, 30]. The permission check validates the identity
of the IPC client via examing its executable file. For example, the
key-value pair called entitlement grants executable permission to
use a service, which is statically embedded into the binary. Specifi-
cally, iService sets the following four levels for permission checks
according to the object they check:

(1) No permission check. The system service directly accepts the
connection without authenticating the IPC client.

(2) Weak permission check. The system service only checks bun-
dle ID or static code, etc.

(3) PID-based permission check. The system service locates the
process via PID and then checks the entitlement.

(4) Audit token-based signature check. The system service locates
the process via audit token to check the entitlement.

The four levels ascend from low to high security, where only
permission checks of Level 4 are sufficient. Validations of Level 3
are also risky due to locating the process via PIDs. PIDs could be
reused via a race to trick code signature verification into checking
different binaries due to the relatively small PID space of the OS,
whereas locating the process with an audit token does not [24].

3.4.2 Evaluate Sensitive Input Validations. iService detects a
lack of input validations based on the insight that input valildations
should restrict the value range of the key parameter of sensitive
operations. The key parameter could be used to exploit the sensitive
operation and is marked during collecting sensitive operations

from Apple’s public documents in Section 3.2. If there is no input
validation for the key parameter, iService reports a missing check.
If input validations exist, iService further evaluates the sufficiency
of input validations.

According to the degree of restriction on the value range, iSer-
vice divides sensitive input validations into four levels:

(1) No sensitive input validation. The system service does not
validate sensitive inputs or only check if they are non-null.

(2) Universal validation. The validation only checks the type or
length and do not restrict the value of a specific parameter.

(3) Weak validation specific to the parameter. The validation re-
stricts the sensitive parameter to a certain value range.

(4) Strong validation specific to the parameter. The validation
restricts the sensitive parameter to a certain value.

Four levels of security ascend from low to high, and iService
considers a lack of input validations if no value range or only a
single-side value range is restricted. Taking the moving file oper-
ation as an example, both prefix check (Level 3) and equivalent
check (Level 4) validates the file path parameter via the sting API.
The prefix check can be bypassed using path traversal, while the
equivalent check (e.g., strcmp) cannot.

3.4.3 Score Confused Deputies Based on Level Weight. iS-
ervice provides a scoring mechanism to indicate the possibility
of the exploitability of confused deputies. It scores a deputy from
two dimensions, i.e., permission checks and input validations. The
permission check is performed once for an IPC connection and its
evaluation is to determine the level according to Section 3.4.1.

As for the input validations, cases are much more complicated.
For a sensitive operation, each parameter from IPC input may have
multiple dataflows and the input validations of each dataflows may
be different.

Therefore, iService performs a level weight scoring mechanism
to evaluate input validations according to Section 3.4.1. Precisely,
it computes a value to represent the possibility of exploitability for
each sensitive operation, denoted as 𝐸, which is defined as follows:

𝐸 =
1
𝑛

∑︁
𝐷𝑠𝑒𝑡𝑖

min
𝐷 𝑗 𝑖𝑛 𝐷𝑠𝑒𝑡𝑖

(
∑︁

𝐼𝑉𝑘 𝑖𝑛 𝑃 𝑗

𝑚𝑘𝑊𝑘 𝐼𝑉𝑘) (1)

where 𝑛 represents the number of sensitive operation’s parameters
controlled by the input, 𝐷𝑠𝑒𝑡𝑖 represents the set of dataflows from
the IPC input to 𝑖𝑡ℎ parameter, 𝐷 𝑗 represents one of the dataflows
in 𝐷𝑠𝑒𝑡𝑖 . Inside, 𝐼𝑉𝑘 and𝑊𝑘 represent the 𝑘𝑡ℎ sensitive input vali-
dation of the dataflow and its level weight, respectively, and𝑚 is a
bool value that indicates whether 𝐼𝑉𝑘 is repeated.

The formula uses sensitive input validations on the most ex-
ploitable execution path to characterize the exploitability of the
controllable parameters of the sensitive operation. It then aver-
ages the exploitability of controllable parameters to measure the
exploitablity of the sensitive operation. The lower the score, the
more possible it is to be exploited.

According to the mechanism above, iService computes scores
for sensitive operations in system services and report services with
𝐸 below pre-defined threshold and permission check level less than
four as confused deputies. The score can also help the analyzer to
learn the severity of the vulnerability.

969

iService: Detecting and Evaluating the Impact of Confused Deputy Problem in AppleOS ACSAC ’22, December 5–9, 2022, Austin, TX, USA

4 IMPLEMENTATION

iService is written in Python totaling about 4,300 LOC. It uses IDA
Pro [25] to disassemble the Mach-O binary and lifts the code to
Microcode, the intermediate language of IDA. Both the type prop-
agation (§ 3.1.2) and code property graph generation (§ 3.3.1) are
built on top of Microcode. The data dependence analysis (§ 3.3.2)
is implemented on the graph database Neo4j [27]. Specifically, iS-
ervice stores the code property graph in the Neo4j database and
constructs interprocedural dataflow on the graph via Neo4j. In ad-
dition, both point-to and alias relationships are processed as edges
among nodes representing operands on the graph. By querying on
the graph database, iService extracts data dependencies between
operands as paths on the graph and identifies protections from
statements along the data dependencies.

As for the threshold of the scoring mechanism, iService uses
an empirical value calculated according to Formula 1. Since a key
parameter of the sensitive operation is considered well-validated
by at least one input validation of Level 4, the vector 𝐼𝑉 is set to
be [0, 0, 0, 1], and the vector 𝑊 is set to be [1, 2, 3, 4] as default.
Therefore, the threshold value is computed to be four. Any score
lower than four is considered to be exploitable.

5 EVALUATION

In this section, we evaluate iService with 1,256 daemon binaries
from four versions of AppleOS to show its effectiveness and per-
formance. We first assess the effectiveness, including the overall
results and confused deputy findings (§ 5.2). Then we evaluate indi-
vidual analysis modules (§ 5.3 and § 5.4) and the performance of
iService (§ 5.5). At last, we use two CVEs found by iService as a
case study to demonstrate its effectiveness further(§ 5.6).

5.1 Setup

5.1.1 Hardware. Our experiment is conducted on MacBook Pro
2019 with macOS 10.15.7, Intel(R) Core(TM) i9-9980HK CPU @
2.40GHz and 64 GB RAM.

5.1.2 Dataset. We collected a total of 1,256 daemon binaries from
four versions of AppleOS, including macOS 10.14.3, 10.15.7, 11.4,
and 12.4. Since the closed-source AppleOS does not document sys-
tem services and their paths, we identified system services from
daemons. We got the daemons through launchd, the first user-
mode process on boot and the parent of all userspace processes.
In addition to system services, many system programs also run as
daemons but are not accessible for user processes. Therefore, we
extracted system services by scanning whether there are services
created via XPC or NSXPC in these binaries. Finally, we extracted
439 binaries registered as system services through XPC or NSXPC
from 1,256 daemon binaries as experiment objects.

5.1.3 Metrics. Similar to other work [15, 18], we adopt Precision
as the metric for evaluation, as defined as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑡𝑝

𝑡𝑝+𝑓 𝑝 , where
𝑡𝑝 means the bug reported is exploitable, 𝑓 𝑝 means the bug reported
is unexploitable, and 𝑓 𝑛 means the exploitable bug is not reported.
Due to the lack of ground truth of vulnerabilities in closed-source
AppleOS, it is impractical to report Recall.

5.2 Effectiveness

5.2.1 Overall Results. We applied iService to the dataset and
completed the experiment in 16 hours. Specifically, iService iden-
tified 439 system services that can be invoked via XPC or NSXPC
in 1,256 daemon binaries and located 830 entry points of them,
as shown in Table 1. Furthermore, iService found 431 sensitive
operations and determined that 87 of them depended on the input
via data dependence analysis. After that, iService extracted and
evaluated permission checks and input validations based on the
data dependencies. Finally, iService reported 20 confused deputies,
of which 11 were confirmed to be exploitable.

5.2.2 Bug Findings. Altogether, iService reported a total of 20
confused deputies in 439 service binaries, 4 of which were duplica-
tions in multiple versions. We manually identified 11 unique true
positives that could be exploited, including overwriting system
files, executing commands, etc., as listed in Table 2. We developed
PoC for all 11 confused deputies and reported them to Apple. 5 of
them were 0-days vulnerabilities and assigned CVEs with Apple
acknowledgement, i.e., CVE-2021-30774 [6], CVE-2019-8521, CVE-
2019-8565, CVE-2019-8513, and CVE-2019-8530[3] 2. The other 6
were 1-days vulnerabilities. At present, these vulnerabilities have
been fixed by Apple.

To demonstrate the severe impact of these vulnerabilities, we
developed proof-of-concept user-space programs to exploit them
in the corresponding OSes. As shown in Table 2, We found that 2
of them allow malicious user programs to gain root privilege, 4 of
them allow arbitrary file writing, 4 of them may cause DoS, and
1 of them allow arbitrary shell command execution. In addition,
these vulnerabilities also affect iOS and tvOS [4, 5, 7].

5.2.3 Precision. Among 20 confused deputies reported, 11 are
true positives, of which 5 are assigned with CVE numbers. 9 are
false positives, of which 4 are duplications in multiple versions.
Therefore, the precision is 55%. Since the total amount of reports
is not large, the precision is feasible for manual confirmation of
vulnerability exploitability.

False positives are caused by failure to locate functions in pri-
vate system libraries. After macOS BigSur, all system libraries
are combined into one large cache file called dyld shared cache,
resulting in iService being unable to dump the hierarchy of
classes and locate their methods. Specifically, the false posi-
tives do not use public APIs to check permission and vali-
date inputs but use methods in private libraries. The two pri-
vate methods they used, i.e., DEUtilsValidateConnection and
DEUtilsValidateDestinition, correctly check the IPC client’s
entitlement and validate the input. Since failing to locate these two
functions in the dyld shared cache, iService incorrectly determined
that these services missed permission check and input validation,
resulting in false positives.

False negatives are caused by two reasons. On the one hand,
some services use IPC mechanisms implemented in the private
library, making iService unable to identify their entry points for

2The four CVEs in 2019 are disclosed by our industry collaborator Zhi Zhou (CodeCol-
orist) by adopting iService.

970

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yizhuo Wang, Yikun Hu, Xuangan Xiao, Dawu Gu

Table 1: Result of the sensitive operation identification

AppleOS Daemon System Service Entry Points Sensitive Operation
XPC NSXPC Total XPC NSXPC Total A B C D 1 In service In Framework Total Controllable2

macOS 10.14.3 293 82 16 98 80 25 (76) 105 (156) 7 38 11 58 105 11 114 31
macOS 10.15.7 301 88 19 107 88 27 (72) 115 (160) 10 39 10 59 106 12 118 27
macOS 11.4 325 96 24 120 113 64 (166) 177 (279) 3 40 11 53 117 − 117 17
macOS 12.4 337 99 15 114 113 69 (122) 182 (235) 2 32 14 21 82 − 82 12

Total 1256 365 74 439 394 185 (436) 579 (830) 29 127 37 194 368 23 431 87
1: A refers to sensitive operations of File Permissions Manipulation. B refers to sensitive operations of System and User Files Manipulation. C refers to sensitive operations of

Preferences Management. D refers to sensitive operations of Process Management. 2: Controllable means a sensitive operation has at least one parameter depending on IPC inputs.

Table 2: Summary of confused deputy vulnerabilities found.

Vulnerable Service OS Cause Impact Status
osanalyticshelper macOS 10.15, 11 Missing permission checks and input validations Gain root privilege CVE-2021-30774

fbahelperd macOS 10.12-14 Weak permission checks and input validations Overwrite arbitrary files CVE-2019-8521
fbahelperd macOS 10.12-14 Weak permission checks and input validations Gain root privilege CVE-2019-8565

timemachinehelper macOS 10.12-14 Missing permission checks and input validations Execute arbitrary shell command CVE-2019-8513
timemachinehelper macOS 10.12-14 Missing permission checks and input validations Overwrite arbitrary files CVE-2019-8530
bluetoothhelper macOS 10.12-14 Missing permission checks and input validations Overwrite arbitrary files Repaired

getmobilityinfohelper macOS 10.12-14 Missing permission checks and input validations Overwrite arbitrary files Repaired
fud macOS 10.14-15 Weak permission checks and input validations File access and DoS Repaired

storelegacy macOS 10.14-15 Missing permission checks and input validations File access and DoS Repaired
coresymbolicationd macOS 10.15, 11 Missing permission checks and input validations May lead to DoS Repaired

wifihelper macOS 10.12-14 Missing permission checks and input validations File access and DoS Repaired

further analysis. For example, service backupd-helper uses a pri-
vate library to implement a specific XPC called TMXPC, thus iSer-
vice failed to analyze it. On the other hand, iService suffers from
inherent issues of dataflow analysis in binary. For example, the
over-approximate alias set will cause a state explosion. In practice,
iService cannot handle all those states, which results in false neg-
atives of controllable sensitive opertions. In addition, IDA would
make mistakes or even fail when lifting complex functions to its IR
for reasons like stack pointer recognition error, indirect call recov-
ery error, etc., which results in failure to analyze these services.

5.3 Sensitive Operation Identification.

5.3.1 Entry Point Identification. iService identified 830 entry
points from 439 system services. As explained in Section 3.1.1, each
XPC service has a unique handler function as the entry point, and
some XPC system service binaries contain multiple XPC services.
Thus, the number of XPC entry points identified by iService is
slightly larger than the number of XPC service binaries. As for the
NSXPC service, since its entry points are the class methods of its
exported objects, the number of NSXPC entry points is multiple
times the number of NSXPC services. As is shown in Table 1, iSer-
vice identified 185 NSXPC services and 436 NSXCP entry points
from the binaries, consistent with the above insight.

5.3.2 Sensitive Operation Identification. iService identified
a total of 431 sensitive operations, of which 29 are used to modify
file permissions and ownership, 127 are used to access system and
user files, 37 are used to manage user and application preferences,
and 194 are used to manage processes, as shown in Table 1. Since
many sensitive operations used tomanage processes appear in pairs,
e.g., spawning a child process via NSTask requires two sensitive
operations (i.e., setLaunchPath and setArguments) at the same
time. Hence the number of process management operations is the
highest among the four categories of sensitive operations.

In addition, some system services authenticate the requester’s
identity and dispatch the request to the objects implemented in
private libraries. Therefore, some sensitive operations are in private
libraries rather than service binaries. For example, the core logic
of the motivating example is implemented in the private library,
which contains sensitive operations in Lines 17 and 18. iService
analyzes private libraries by using external functions in services
as entry points, thereby finding 23 sensitive operations in private
libraries. However, as discussed in Section 5.2.3, after macOS BigSur,
private libraries have been combined into the dyld shared cache,
which makes iService unable to find sensitive operations in private
libraries in macOS 11.4 and 12.4, resulting in false negatives.

5.3.3 Controllable Operation Identification. As shown in Ta-
ble 1, iService identifies a total of 87 controllable sensitive op-
erations, of which the key parameters are dependent on the IPC
input. The number of controllable sensitive operations is gradually
reduced due to two main reasons. On the one hand, Apple repaired
some vulnerabilities by removing unnecessary sensitive operations,
thereby reducing the number of controllable sensitive operations.
On the other hand, the data dependence analysis performed by
iService produces false negatives. For example, the alias analysis
adopted produces over-approximate alias set, which would cause a
state explosion. iService then cannot handle all those states, which
results in false negatives of controllable sensitive operations. In
addition, failure to identify sensitive operations in the dyld shared
cache leads to false negatives here as well.

5.4 Protection Evaluation.

5.4.1 Entitlement Verification. While analyzing permission
checks, iService found three different ways to extract the enti-
tlement, which are prone to misuse and result in the permission
check bypassing. The three types of extractions are as follows:

(1) Get the entitlement directly from the incoming (NS)XPC
connection object;

971

iService: Detecting and Evaluating the Impact of Confused Deputy Problem in AppleOS ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Table 3: Scores and serverity of vulnerabilities.

Vulnerable Service score1 severity2 CVE ID
osanalyticshelper 1 7.8 CVE-2021-30774

fbahelperd 3 5.5 CVE-2019-8521
fbahelperd 2 7.0 CVE-2019-8565

timemachinehelper 1 7.8 CVE-2019-8513
timemachinehelper 3 5.5 CVE-2019-8530

1: Score is computed through the level weight method in Section 3.4.3.
2: Severity is provided by National Vulnerability Database (NVD).

Figure 6: Analysis time cost distribution histogram.

(2) Obtain the target process through the audit token to extract
the entitlement;

(3) Get the target process by PID and get its entitlement.
The first and second are property permission checks belonging

to Level 4 (§ 3.4.2). The third one would be bypassed using race
condition because it uses PID to locate the process. For example, the
service fud in Table 2 obtains the entitlement of the target process
via copyEntitlementsForPid, which allows malicious programs
to bypass the authentication. Apple fixed it by changing the check
to an audit token-based check.

5.4.2 Restrictions for String Inputs. iService found three re-
strictions on string parameters in sensitive input validations:

(1) C-based API (i.e., strncmp) to compare strings as expected;
(2) Objective-C API (i.e., isEqualToString) to determine if the

string is as expected;
(3) hasPrefix method to determine whether the string prefix

meets the requirements.
The first and second are Level 4 input validation. The third de-

tection method is Level 3, which can be bypassed via path traversal.
The problem exists in the 0-day bugs found (§ 5.6.1).

5.4.3 Evaluate Scoring Mechanism. To evaluate the effective-
ness of iService’s scoring mechanism, we compare the scores calcu-
lated for the five discovered CVEs to the severity provided by NVD,
as shown in Table 3. The trend of the two is consistent, i.e., for the
vulnerabilities more likely to exploit calculated by iService, the
severity provided by NVD is higher. For example, CVE-2019-8521
has a higher score than other CVEs due to multiple Level 3 sensitive
input validations on its utilization path, and the severity provided
by NVD is also the lowest among several CVEs.

5.5 Performance

The distribution of time costs for analyzing system services with
sensitive operations is shown in Figure 6. For nearly 90% of services,
iService analyzed them within 4 minutes. The main time cost is in

1 if ([src hasPrefix:@“/Library/Logs”] || [src hasPrefix:@"/var/log"]){
2 if (![self canModifyPath:dst]) {
3 result[src] = [NSString stringWithFormat:@"Invalid
4 destination: %@", dst];
5 } else {
6 result[src] = @"File must be copied from a log directory";
7 }
8 }

... // Skip some complex code
9 [fileMg copyItemAtPath:src toPath:dst error:&err]

10 [self fixPermissionsOfURL:dst recursively:1]

11 if ([dst hasPrefix:@"/var/folders/"] ||
12 [dst hasPrefix:@"/private/var/"] || [dst hasPrefix:@"/tmp/"]) {
13 return TRUE;
14 } else {
15 return [dst rangeOfString:@"Library/Caches/
16 com.apple.appleseed.FeedbackAssistant"] != 0;
17 }

-[FBAPrivilegedDaemon canModifyPath:]

-[FBAPrivilegedDaemon copyLogFiles:]

Figure 7: The critical code snippet in the confused

deputy of CVE-2019-8521, where the binary is lifted to

the Objective-C source code, e.g., the function call at

Line 9 is the result of resolving objc_msgSend(fileMg,
"copyItemAtPath:ToPath:error:", src, dst, &err).

the function dataflow construction, which is a one-time effort. Neo4j
generated overhead in merging and continuously updating the
graph database, especially for services with complex functions and
calling relationships. After such a one-time effort, graph database-
based data dependence analysis and protection extraction can be
completed in seconds.

5.6 Case Study

5.6.1 Case-1: CVE-2019-8521. The confused deputy in Figure 1
is located in the feedback assistant service, which can be abused
to perform arbitrary file overwriting and further gain root privi-
leges [6]. It performs the sensitive operation of moving files (Line
9) and the key parameters are string variables src and dst, which
represent the source file and the destination path, respectively. The
service restricts src and dst by checking their prefix via hasPrefix
at Lines 1, 11, and 12. However, such prefix-path matching can
be bypassed via path traversal, such as /var/log/../../AnyPath.
Therefore, malicious programs can copy crafted files to the existing
system file path for overwriting, thereby obtaining root privileges.

iService identifies such weak input validations via sensitive
operation-oriented data dependence analysis. Specifically, it first
resolves indirect calls to recover the calling relationship at the call
site (Line 2) and identify the sensitive operation (Line 9). After that,
iService extracts data dependencies between the IPC input and
parameters used in file copying operation, i.e., src and dst. Then,
it identifies statements in Lines 1, 2, 11, and 12 as sensitive input
validations based on the data dependencies. Finally, iService finds
that the service only relies on prefix matching to restrict src and
funcdst, which can be bypassed, thus reporting a confused deputy.

5.6.2 Case-2: CVE-2019-8530. Figure 8 depicts the critical code
snippet of the confused deputy in the Time Machine module, which
can be abused for arbitrary file overwriting [3]. The vulnerability
is caused by a lack of input validation for the key parameter of
the task arguments setting operations in Line 16, which is used to
set the command parameter of the NSTask-spawned child process.
The child process executes tmdiagnose, generates hundreds of
megabytes of system diagnostic information, and dumps it into

972

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yizhuo Wang, Yikun Hu, Xuangan Xiao, Dawu Gu

1 txt = objc_msgSend(dir, "URLByAppendingPathComponent:",
2 CFSTR("DETimeMachineExtension-error.txt"));
3 tmd = CFSTR("/usr/bin/tmdiagnose");
4 args[0] = CFSTR("-w");
5 args[1] = CFSTR("-r");
6 args[2] = CFSTR("-f");
7 args[3] = objc_msgSend(dir, "path");
8 argsArray = objc_msgSend(&OBJC_CLASS___NSArray,
9 "arrayWithObjects:count:", args, 4LL);

10 fd = objc_msgSend(&OBJC_CLASS___NSFileHandle,
11 "fileHandleForWritingToURL:error:", txt, &err);
12 if (fd){
13 task = objc_msgSend(&OBJC_CLASS___NSTask, "alloc");
14 _task = objc_msgSend(task, "init");
15 objc_msgSend(_task, "setLaunchPath:", tmd);
16 objc_msgSend(_task, "setArguments:", argsArray);

... // Set other configures
17 objc_msgSend(_task, "launch");

Figure 8: The critical code snippet of CVE-2019-8530, where

variables highlighted in yellow represent the dataflow from

the input (dir) to sensitive operations (Line 16).

the directory dir specified by the input. Since dir is not validated,
malicious programs can write diagnostic information to arbitrary
directories, allowing DoS attacks, such as fulfilling a disk.

iService identifies data dependencies between input dir and
argsArray in Line 16. Specifically, iService performs field-
sensitive dataflow analysis, and constructs the dataflow between
function parameters and the return value in Line 8. After that, iSer-
vice found that dir could control the parameter of task arguments
setting operation and there is no validations to restrict the value of
dir. Therefore, iService reported a confused deputy.

6 DISCUSSION

6.1 Limitation in Reverse Engineering.

iService failed to analyze some system services where entry points
could be identified, due to the limitation in reverse engineering. On
the one hand, since iService uses IDA to lift the IR, the extent to
which iService reverse the binary depends on the IR processing
power of IDA. When IDA cannot properly disassemble and gener-
ate IR, iService cannot work as well. And the errors generated by
the IDA would also affect the type recovery and call relationship
identification of iService. On the other hand, the update of the
OS would introduce new compiler features into binaries, which
cause iService to encounter new cases that require additional pro-
cessing on the latest version. In addition, the dyld shared cache is
also updated and its format is changed. Resulting in more reverse
engineering being required to parse it. Therefore, more reverse
engineering on AppleOS is left as future work.

6.2 Comparison to Kobold

Kobold is the only existing work looking into confused deputies
in AppleOS. It leverages black box fuzzing and manual analysis
to detect confused deputies caused by a lack of access control.
Comparing the two on the methodology level, iService outperforms
Kobold due to its problem scope and code coverage. iService can
handle input validations and numerous kinds of permission checks,
while Kobold only focuses on one type of permission check called
entitlement check. Furthermore, iService provides themethod based
on static analysis with high code coverage, while Kobold is based
on black-box fuzzing with limited code coverage.

As for bug detection, iService finds five CVEs, and it can be in-
ferred that Kobold can find none of them due to the two limitations

discussed above. CVE-2019-8521 and CVE-2019-8565 correspond
to permission checks via PID, which Kobold does not cover due to
the problem scope Issue. Triggering CVE-2021-30774, CVE-2019-
8513, and CVE-2019-8530 requires to understand logic flaws, e.g.,
complex string input with specific meaning, which can hardly be
achieved by black-box fuzzing used in Kobold.

7 RELATEDWORK

Previous work in AppleOS. Recent years, works on AppleOS
mainly focus on bug detection of the AppleOS driver and IPC
mechanism. iDEA [10] detected conditional competition and out-
of-bound read and write in the kernel driver using static analysis.
SyzGen [14] automated the generation of syscall specifications
for closed-source macOS drivers and performed interface-aware
fuzzing based on it. As for the IPCmechanism, Min Zheng et al. [34]
summarized the (Mach) Port-oriented Programming (POP) attack
to exploit kernel memory corruption vulnerability, and proposed
the Port Ultra-SHield (PUSH) to defend against POP attack. In
userspace, IPC mechanismmay be a breakthrough in Apple’s access
control [9, 11, 12, 17]. Kobold [16] performed a black-box fuzzing
with manual analysis to detect confused deputies lacking entitle-
ment checks in iOS. However, there is still no systematic research
for confused deputy detection in AppleOS.
Confused deputy detection in Android. Existing work [1, 9,
19, 20, 22, 23, 31] discovers and utilizes misconfigured permission
checks of Android system services based on statics source code
analysis.. Buzzer [13] and FANS [26] leverage fuzzing to detect
memory corruption caused by a lack of input validations, while
Invetter [33] uses a learning-based recognition method relying on
variable names to locate problematic sensitive input validations.

8 CONCLUSION

In this paper, we propose iService, a static analyzer to detect con-
fused deputies and evaluate the impact of them. iService adopt a
top-down type propagation to resolve function calls, and perform
sensitive operation-oriented data dependence analysis to extract
permission checks and input validations. It evaluates the protec-
tions to report confused deputies . iService was applied to 439
system services from four AppleOS versions and discovered 11
confused deputies. Five of them are 0-day bugs, which are assigned
with CVE numbers, and others are 1-day bugs. We reported them
to Apple and all of them have been fixed.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their
valuable feedback to improve our manuscript. We especially thank
Zhi Zhou (CodeColorist) for his contribution to our work. In addi-
tion, this work is partially supported by Shanghai Pujiang Program
(No. 22PJ1405700) and the National Key Research and Development
Program of China (No. 2020AAA0107803, No. 2021YFB3101402, and
No. 2021QY2333).

REFERENCES

[1] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li.
2018. Precise Android API protection mapping derivation and reasoning. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 1151–1164.

973

iService: Detecting and Evaluating the Impact of Confused Deputy Problem in AppleOS ACSAC ’22, December 5–9, 2022, Austin, TX, USA

[2] Apple Inc. 2016. Elevating Privileges Safely - Apple Developers.
https://developer.apple.com/library/archive/documentation/Security/
Conceptual/SecureCodingGuide/Articles/AccessControl.html. [Online;
accessed 8-June-2022].

[3] Apple Inc. 2019. About the security content of macOS Mojave 10.14.4. https:
//support.apple.com/en-us/HT209600. [Online; accessed 28-June-2022].

[4] Apple Inc. 2021. About the security content of iOS 12.2. https://support.apple.
com/en-us/HT209599. [Online; accessed 28-June-2022].

[5] Apple Inc. 2021. About the security content of iOS 14.7 and iPadOS 14.7. https:
//support.apple.com/en-us/HT212601. [Online; accessed 28-June-2022].

[6] Apple Inc. 2021. About the security content of macOS Big Sur 11.5. https:
//support.apple.com/en-us/HT212602. [Online; accessed 28-June-2022].

[7] Apple Inc. 2021. About the security content of tvOS 14.7. https://support.apple.
com/en-us/HT212604. [Online; accessed 28-June-2022].

[8] Aronskaka. 2020. Job(s) Bless Us! Privileged Operations on macOS.
https://speakerdeck.com/vashchenko/job-s-bless-us-privileged-operations-on-
macos?slide=2. [Online; accessed 8-June-2022].

[9] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. Pscout:
analyzing the android permission specification. In Proceedings of the 2012 ACM
conference on Computer and communications security. 217–228.

[10] Xiaolong Bai, Luyi Xing, Min Zheng, and Fuping Qu. 2020. idea: Static analysis
on the security of apple kernel drivers. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 1185–1202.

[11] Ian Beer. 2015. Auditing and Exploiting Apple IPC. Accessed: 2022-06-01.
[12] Tyler Bohan. 2019. OSX XPC Revisited - 3rd Party Application Flaws. Accessed:

2022-06-01.
[13] Chen Cao, Neng Gao, Peng Liu, and Ji Xiang. 2015. Towards analyzing the input

validation vulnerabilities associated with android system services. In Proceedings
of the 31st Annual Computer Security Applications Conference. 361–370.

[14] Weiteng Chen, Yu Wang, Zheng Zhang, and Zhiyun Qian. 2021. SyzGen: Auto-
mated Generation of Syscall Specification of Closed-Source macOS Drivers. In
ACM CCS.

[15] Zhui Deng, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2015.
iris: Vetting private api abuse in ios applications. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 44–56.

[16] Luke Deshotels, Costin Carabas, Jordan Beichler, Răzvan Deaconescu, and
William Enck. 2020. Kobold: Evaluating decentralized access control for re-
mote NSXPC methods on iOS. In 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 1056–1070.

[17] Luke Deshotels, Razvan Deaconescu, Costin Carabas, Iulia Manda, William Enck,
Mihai Chiroiu, Ninghui Li, and Ahmad-Reza Sadeghi. 2018. iOracle: Automated
evaluation of access control policies in iOS. In Proceedings of the 2018 on Asia
Conference on Computer and Communications Security. 117–131.

[18] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. 2011. PiOS:
Detecting Privacy Leaks in iOS Applications.. In NDSS. 177–183.

[19] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android permissions demystified. In Proceedings of the 18th ACM conference
on Computer and communications security. 627–638.

[20] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses.. In USENIX

security symposium, Vol. 30. 88.
[21] Sigmund Albert Gorski, Benjamin Andow, Adwait Nadkarni, Sunil Manandhar,

William Enck, Eric Bodden, and Alexandre Bartel. 2019. Acminer: Extraction and
analysis of authorization checks in android’s middleware. In Proceedings of the
Ninth ACM Conference on Data and Application Security and Privacy. 25–36.

[22] Sigmund Albert Gorski III and William Enck. 2019. Arf: identifying re-delegation
vulnerabilities in android system services. In Proceedings of the 12th conference
on security and privacy in wireless and mobile networks. 151–161.

[23] Sigmund Albert Gorski III, Seaver Thorn, William Enck, and Haining Chen. 2022.
FRED: Identifying File Re-Delegation in Android System Services. (2022).

[24] Samuel Groß. 2018. Don’t Trust the PID! Stories of a simple logic bug and where
to find it. https://saelo.github.io/presentations/warcon18_dont_trust_the_pid.pdf.
[Online; accessed 8-June-2022].

[25] Hex-Rays. 2022. IDA Pro: A powerful disassembler and a versatile debugger.
https://www.hex-rays.com/products/ida. [Online; accessed 28-June-2022].

[26] Baozheng Liu, Chao Zhang, Guang Gong, Yishun Zeng, Haifeng Ruan, and
Jianwei Zhuge. 2020. {FANS}: Fuzzing Android Native System Services via
Automated Interface Analysis. In 29th USENIX Security Symposium (USENIX
Security 20). 307–323.

[27] Neo4j Team. 2022. NEO4J GRAPH DATA PLATFORM: Blazing-Fast Graph,
Petabyte Scale. https://neo4j.com. [Online; accessed 28-June-2022].

[28] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 49–61.

[29] Thomas Reps, Mooly Sagiv, and Susan Horwitz. 1994. Interprocedural dataflow
analysis via graph reachability. Datalogisk Institut, Københavns Universitet.

[30] Wojciech. 2020. Abusing and Securing XPC in macOS apps. https://
objectivebythesea.org. [Online; accessed 8-June-2022].

[31] Xiaobo Xiang, Ren Zhang, Hanxiang Wen, Xiaorui Gong, and Baoxu Liu. 2021.
Ghost in the Binder: Binder Transaction Redirection Attacks in Android System
Services. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. 1581–1597.

[32] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and
discovering vulnerabilities with code property graphs. In 2014 IEEE Symposium
on Security and Privacy. IEEE, 590–604.

[33] Lei Zhang, Zhemin Yang, Yuyu He, Zhenyu Zhang, Zhiyun Qian, Geng Hong,
Yuan Zhang, and Min Yang. 2018. Invetter: Locating insecure input validations in
android services. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 1165–1178.

[34] Min Zheng, Xiaolong Bai, Yajin Zhou, Chao Zhang, and Fuping Qu. 2021. POP and
PUSH: Demystifying and Defending against (Mach) Port-oriented Programming..
In NDSS.

A SENSITIVE OPERATION COLLECTION

iService collects a total of 40 C-APIs and 94 Objective-C APIs
as sensitive operations according to Apple’s public documents, as
shown in Table 4.

974

https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/Articles/AccessControl.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/Articles/AccessControl.html
https://support.apple.com/en-us/HT209600
https://support.apple.com/en-us/HT209600
https://support.apple.com/en-us/HT209599
https://support.apple.com/en-us/HT209599
https://support.apple.com/en-us/HT212601
https://support.apple.com/en-us/HT212601
https://support.apple.com/en-us/HT212602
https://support.apple.com/en-us/HT212602
https://support.apple.com/en-us/HT212604
https://support.apple.com/en-us/HT212604
https://speakerdeck.com/vashchenko/job-s-bless-us-privileged-operations-on-macos?slide=2
https://speakerdeck.com/vashchenko/job-s-bless-us-privileged-operations-on-macos?slide=2
https://saelo.github.io/presentations/warcon18_dont_trust_the_pid.pdf
https://www.hex-rays.com/products/ida
https://neo4j.com
https://objectivebythesea.org
https://objectivebythesea.org

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yizhuo Wang, Yikun Hu, Xuangan Xiao, Dawu Gu

Table 4: Sensitive operation collection.

Category API Type Function

Manipulate file permissions and ownership
C-based _fchown

_fchmod

Objective-C-based -[NSFileManager changeFileAttributes:atPath:]
-[NSFileManager setAttributes:ofItemAtPath:error:]

Manipulate system and user files

C-based _dlopen

Objective-C-based

-[NSFileManager copyPath:toPath:handler:]
-[NSFileManager movePath:toPath:handler:]
-[NSFileManager removeFileAtPath:handler:]
-[NSFileManager removeItemAtURL:error:]
-[NSFileManager removeItemAtPath:error:]
-[NSFileManager linkPath:toPath:handler:]

-[NSFileManager copyItemAtURL:toURL:error:]
-[NSFileManager copyItemAtPath:toPath:error:]
-[NSFileManager moveItemAtURL:toURL:error:]
-[NSFileManager moveItemAtPath:toPath:error:]

-[NSFileManager createSymbolicLinkAtURL:...:error:]
-[NSFileManager createSymbolicLinkAtPath:...:error:]

-[NSFileManager createDirectoryAtURL:...:attributes:error:]
-[NSFileManager linkItemAtURL:toURL:error:]
-[NSFileManager linkItemAtPath:toPath:error:]

-[NSFileManager createFileAtPath:contents:attributes:]
-[NSString writeToFile:atomically:encoding:error:]
-[NSString writeToURL:atomically:encoding:error:]

+[NSString stringWithContentsOfFile:encoding:error:]
-[NSString initWithContentsOfFile:encoding:error:]

+[NSString stringWithContentsOfFile:usedEncoding:error:]
-[NSString initWithContentsOfFile:usedEncoding:error:]
+[NSString stringWithContentsOfURL:encoding:error:]
-[NSString initWithContentsOfURL:encoding:error:]

+[NSString stringWithContentsOfURL:usedEncoding:error:]
-[NSString initWithContentsOfURL:usedEncoding:error:]
+[NSDictionary dictionaryWithContentsOfURL:error:]

+[NSDictionary dictionaryWithContentsOfURL:]
-[NSDictionary initWithContentsOfURL:error:]

-[NSDictionary initWithContentsOfURL:]
+[NSDictionary dictionaryWithContentsOfFile:]

-[NSDictionary initWithContentsOfFile:]
-[NSDictionary writeToURL:error:]

-[NSDictionary writeToURL:atomically:]
-[NSDictionary writeToFile:atomically:]
+[NSArray arrayWithContentsOfFile:]
+[NSArray arrayWithContentsOfURL:]

+[NSArray arrayWithContentsOfURL:error:]
-[NSArray initWithContentsOfURL:error:]

-[NSArray writeToFile:atomically:]
-[NSArray writeToURL:atomically:]

-[NSArray writeToURL:error:]
+[NSData dataWithContentsOfFile:]

+[NSData dataWithContentsOfFile:options:error:]
+[NSData dataWithContentsOfURL:]

+[NSData dataWithContentsOfURL:options:error:]
-[NSData initWithContentsOfFile:]

-[NSData initWithContentsOfFile:options:error:]

975

iService: Detecting and Evaluating the Impact of Confused Deputy Problem in AppleOS ACSAC ’22, December 5–9, 2022, Austin, TX, USA

-[NSData initWithContentsOfURL:]
-[NSData initWithContentsOfURL:options:error:]

-[NSData initWithContentsOfMappedFile:]
+[NSData dataWithContentsOfMappedFile:]

-[NSData writeToFile:atomically:]
-[NSData writeToFile:options:error:]
-[NSData writeToURL:atomically:]

-[NSData writeToURL:options:error:]

Manage user and application preference C-based

_CFPreferencesCopyAppValue
_CFPreferencesCopyValue
_CFPreferencesSetValue

_CFPreferencesSetMultiple
_CFPreferencesSetAppValue

Manipulate system and user files

C-based

_system
_execl
_execlp
_execle
_execv
_execvp
_execvP

_sandbox_init
_sandbox_init_with_parameters

_posix_spawn
_posix_spawnp

_LSOpenApplication
_LSOpenURLsWithRole

_LSOpenFSRef
_LSOpenCFURLRef

_LSOpenFromURLSpec
_CFBundleCreate

_CFBundleCreateBundlesFromDirectory
_CFBundleLoadExecutable

_CFBundleLoadExecutableAndReturnError
_SMJobSubmit
_SMJobBless

Objective-C-based

+[NSTask launchedTaskWithLaunchPath:arguments:]
-[NSTask setLaunchPath:]
-[NSTask setArguments:]

-[NSTask launch]
-[NSTask launchAndReturnError:]

+[NSTask launchedTaskWithExecutableURL:...:]
-[NSUserScriptTask initWithURL:error:]

-[NSUserScriptTask setScriptURL]
-[NSUserScriptTask executeWithCompletionHandler:]
-[NSUserAppleScriptTask executeWithAppleEvent:...:]

-[NSUserUnixTask executeWithArguments:completionHandler:]
+[NSBundle bundleWithURL:]
+[NSBundle bundleWithPath:]
-[NSBundle initWithURL:]
-[NSBundle initWithPath:]

-[NSBundle load]
-[NSBundle loadAndReturnError:]

+[NSInvocation invocationWithMethodSignature:]
-[NSInvocation invoke]

-[NSInvocation invokeWithTarget:]
-[NSInvocation setArgument:atIndex:]

976

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yizhuo Wang, Yikun Hu, Xuangan Xiao, Dawu Gu

+[NSExpression expressionWithFormat:]
+[NSExpression expressionWithFormat:argumentArray:]

+[NSExpression expressionWithFormat:arguments:]
-[NSExpression expressionValueWithObject:context:]
-[NSWorkspace openURL:options:configuration:error:]

-[NSWorkspace openURLs:withApplicationAtURL:...:error:]
-[NSWorkspace openFile:]

-[NSWorkspace openFile:withApplication:]
-[NSWorkspace openFile:withApplication:andDeactivate:]

-[NSWorkspace openFile:fromImage:at:inView:]

977

	Abstract
	1 Introduction
	2 Motivation and Overview
	2.1 Motivating Example and Challenges
	2.2 Overview

	3 Design
	3.1 Call Graph Generation
	3.2 Sensitive Operation-based pruning
	3.3 Protections Extraction
	3.4 Confused Deputy Discovery

	4 Implementation
	5 Evaluation
	5.1 Setup
	5.2 Effectiveness
	5.3 Sensitive Operation Identification.
	5.4 Protection Evaluation.
	5.5 Performance
	5.6 Case Study

	6 Discussion
	6.1 Limitation in Reverse Engineering.
	6.2 Comparison to Kobold

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Sensitive Operation Collection

