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Abstract. To provide a tamper-proof mechanism for mobile apps to
check the integrity of the device and their own code/data, Android
phone manufacturers have introduced Manufacturer-provided Android
Remote Attestation (MARA) frameworks. The MARA framework helps
an app conduct a series of integrity checks, signs the check results, and
sends them to remote servers for a remote attestation. Nonetheless, we
observe that real-world MARA frameworks often adopt two implemen-
tations of integrity check (hardware-based and software-based) for com-
patibility consideration, and this allows an attacker to easily conduct a
downgrade attack to force the app to utilize the software-based integrity
check and forge checking results, even if the Android device is able to
employ hardware-supported remote attestation securely. We demonstrate
our MARA bypass approach against MARA frameworks (i.e., Google
SafetyNet and Huawei SafetyDetect) on real Android devices, and design
an automated measurement pipeline to analyze 35,245 popular Android
apps, successfully attacking all 104 apps that use these MARA services,
including well-known apps and games such as TikTok Lite, Huawei Wallet,
and Pokémon GO. Our study reveals the significant risks against MARA
frameworks in use.

Keywords: Remote Attestation · Android Device Integrity · Android
App Integrity

1 Introduction

On the Android platform, ensuring the integrity of the device environment is
crucial for app developers. For instance, most payment and banking apps exam-
ine whether the runtime environment is tampered (e.g., the device is “rooted”).
If so, they refuse to run, in order to reduce the potential risks to users’ property
and privacy [3,4]. Many game apps also need root detection to prevent game
cheating [1,2]. Moreover, some mobile advertisers would like to verify whether
ad clicks are coming from real devices to prevent click fraud [5]. In addition to
device integrity, many app developers also hope to verify the app integrity to
prevent app repackaging which may cause intellectual property infringement or
ad insertion [6,8].
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Fig. 1. Workflow of MARA.

It is, however, difficult to implement a secure integrity check by only utiliz-
ing the app client. Malicious users could easily modify or disable the integrity
check functions to circumvent such defenses. To guarantee a tamper-proof
integrity check for Android apps, Android phone manufacturers have imple-
mented integrity check frameworks at the OS level and provided easy-to-use
APIs for apps to retrieve integrity check results. We refer to these integrity
check frameworks as Manufacturer-provided Android Remote Attes-
tation (MARA) frameworks as they have adopted the Remote Attestation
(RA) [30] scheme to prevent check results from being tampered or forged. Two
commercially available MARA framework implementations, Google SafetyNet
[24] and Huawei SafetyDetect [25] are widely used in Android phones sold in the
United States and mainland China, respectively. Such MARA frameworks are
often parts of the Mobile Service (MS) Cores, that is, the Google Mobile Service
Core (GMS Core) [12] and the Huawei Mobile Service Core (HMS Core) [14].

The overview of the MARA’s workflow is shown in Fig. 1. When an app calls
the MARA API provided by the MS Core, MS Core collects information about
the device and the app, signs and then sends these information to the Mobile
Service server, and ultimately returns an integrity check result signed by the
MS server. If the result indicates, for example, that the device is an emulator
instead of a physical device, the app server will return specific commands to the
app (e.g., asking the app to terminate execution).

To the best of our knowledge, no previous work has comprehensively and
accurately evaluated the security of popular MARA frameworks. Aldoseri et
al. [33] theoretically analyzed the security of some MARA protocols. They, how-
ever, only focused on the high-level design and did not analyze the actually
implemented version of the deployed MARA framework. We observe that many
of the implementation details did not fully follow the protocol specification, as
shown in Sect. 3.2, and this would lead to severe security violations even though
the original protocol has been verified. Some researches [26,27,29] focused on the
internal mechanism of Google SafetyNet, but they did not conduct a security
analysis and did not discuss other MARA frameworks. Other researches [28,32]
detected the misuse of Google SafetyNet API in Android apps and did not ana-
lyze the security of the MARA frameworks themselves.
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Our Work. Despite all previous research efforts, we argue that the security of
MARA frameworks remains an unanswered research question. In this paper, we
comprehensively analyze the security status of two mainstream MARA services
– Google SafetyNet and Huawei SafetyDetect (SafetyNet and SafetyDetect in short,
respectively).

We first conduct a thorough reverse engineering to recover the underlying
mechanisms of both SafetyNet and SafetyDetect. We find that their attestation
protocols follow a similar weakness: the MS Core signs the device and app infor-
mation, and sends the signed information to the MS Server. In this process, MARA
allows for two signing modes of MS Core. If the device supports TrustZone, then a
hardware-backed KeyStore [23] will be employed during the signing process; oth-
erwise, the signing is entirely executed by the software-level MS Core. We refer to
the check result in these two signing modes as hardware-based check result and
software-based check result, respectively. A severe security vulnerability here is
that the hardware-based integrity check cannot be enforced. That is, most app
servers unconditionally accept a software-based check result, even if the device
supports hardware-based integrity check. If we deceive the app server that the cur-
rent device does not support hardware-based attestation, then a software-based
check result is accepted, regardless of the actual situation. Since the software-

based signing process can be emulated, if the MARA protocol is determined,
attackers can impersonate MS Core to sign arbitrary messages and cheat the MS
Server to return a benign result to both the caller app and the app server. This
has finally led to a decrease in the security of the MARA mechanism.

We design an automated measurement pipeline and utilize it to analyze
35,245 top popular apps, confirming that 104 apps, including popular apps and
games such as TikTok Lite, Huawei Wallet, Pokémon GO, and NBA LIVE, use
the MARA service. Our test shows that there does exist a generic downgrade

attack to bypass MARA: our software-emulated bypassing approach succeeds
against all these apps, which demonstrates the insecurity of the widely used
MARA protection.

In a nutshell, this paper makes the following contributions:

• An in-depth reverse engineering to reveal the underlying mechanism of typical
MARA frameworks.

• The identification of a common design flaw in these frameworks, which can
be exploited to bypass MARA protection.

• A large-scale measurement on real-world apps to evaluate the associated secu-
rity risks.

Ethical Considerations. We have reported the issue of Google SafetyNet to
Google Bug Hunters [36] in May 2022, and Google Security Team has filed the
bug based on our report. For the issue of Huawei SafetyDetect, we have reported
it to CNCERT/CC1, and CNCERT/CC has verified our findings and documented
related vulnerability under CNVD-2023-57655.
1 National Computer Network Emergency Response Technical Team/Coordination

Center of China, the national CERT of China and responsible for handling severe
cyber-security incidents [35].
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2 Background

2.1 Remote Attestation

Remote Attestation (RA) [30,31] is a mechanism to verify the integrity and
trustworthiness of remote computing devices or systems. A typical remote attes-
tation procedure [30] involves three main parties: the Attester is the device or
system being attested and generates believable information about itself (“Evi-

dence”); the Verifier verifies the Evidence and generates the “Attestation Result”;
the Relying Party makes the final decision based on the Attestation Result from
the Verifier.

On Android, there are several manufacturer-developed implementations for
remote attestation. We call them Manufacturer-provided Android Remote Attes-
tation (MARA) frameworks. In these MARA frameworks, mobile devices and
their apps typically act as the Attester, the manufacturer’s Server usually acts
as the Verifier, and the Relying Party is the App Server.

2.2 Mobile Service Core

MARA frameworks are often implemented in the Mobile Service Cores (MS
Cores), such as Google Mobile Service Core (GMS Core) [12] and Huawei Mobile
Service Core (HMS Core) [14]. These MS Cores are usually integrated into the
OS. The phones produced by Google, Huawei and their licensed co-operators [15,
16] are pre-installed with MS Cores since shipped from the factory. For other
phones, phone users can also easily install MS Cores by themselves. Since apps
like Google Play Store [17], YouTube [18], and Huawei Health [20] can only be
used after MS Core is installed, MS Cores have over billions of users [22] and
cover almost all countries around the world [21]. This has expanded the impact
of security issues within GMS Core and HMS Core.

2.3 Integrity on Android

On Android, integrity protection mainly concerns three aspects:

(1) Device Integrity. Device integrity refers to whether the software and
hardware environment of a device has not been unauthorizedly tampered with.
Specifically for Android, actions that compromise device integrity include root-
ing, unlocking the bootloader, changing the SELinux status, using emulators to
impersonate a device, and so on. Since running the app on compromised devices
can adversely affect the app’s service [1–5], ensuring the device integrity is nec-
essary for app developers.

(2) App Integrity. On Android, app integrity mainly refers to whether the
app is identical to its official version. The most typical attack behavior that
compromises app integrity is app repackaging, which can bring many security
risks [6,7]. The repackaged app differs from the original app in aspects such as
the APK file digest and app signing certificate fingerprint [48].
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Fig. 2. Key design of the MARA scheme.

(3) Data Integrity. The integrity of certain sensitive data (such as a gamer’s
score) transmitted from mobile apps to app servers needs to be safeguarded, as
attackers may attempt to tamper with these data through network man-in-the-
middle (MITM) attacks.

3 MARA Frameworks Demystification

In this section, we introduce the underlying mechanism of two typical MARA
frameworks, namely Google SafetyNet and Huawei SafetyDetect. Through reverse
engineering, we found that their attestation protocols followed a similar scheme,
as described in Sect. 3.1. In Sect. 3.2 and 3.3, we introduce the detailed attesta-
tion protocols of SafetyNet and SafetyDetect respectively.

3.1 MARA Scheme

Key Design. Figure 2 presents the high-level design of MARA schemes.
First, the Third-party App on the user’s mobile phone obtains a Nonce from

the App Server (Step 1© and 2©). Then, the App calls the MARA API, together
with Data+Nonce and AppKey as the parameters (Step 3©). Here, Data refers
to the sensitive data that the App wants to protect from being tampered with,
such as the gamer’s score. The Data will be concatenated with the Nonce. App-
Key is exclusive to a specific app and is pre-assigned to app developers by the
manufacturer. It is a fixed string and is usually hard-coded in the App.

Following this, the Mobile Service Core will retrieve the properties of the device
(Step 4©a) and the App (Step 4©b) to get the DeviceInfo and the AppInfo. After-
wards, the DeviceInfo and AppInfo, along with the Data+Nonce and AppKey,
will be signed and sent to the Mobile Service Server (Step 5©). The signing process
typically involves a signing key that has been pre-negotiated between the Mobile

Service Core and the Mobile Service Server. After verifying the signature, Mobile

Service Server will check the integrity of the device based on the DeviceInfo and
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generate CheckRslt. Mobile Service Server will then sign the CheckRslt, along with
theData+Nonce,AppKey, andAppInfo, using its private key. This signed message
will ultimately be obtained by the App Server (Step 6©, 7© and 8©).

App Server need to verify the Mobile Service Server’s signature and check the
Nonce. Finally, based on the integrity of the device and app, App Server needs
to make decisions (Step 9©). Device integrity can be retrieved directly from the
CheckRslt and app integrity needs to be judged by comparing AppInfo with that
of the legitimate app client.

Integrity Protection. Through the above process, MARA Service can provide
caller app with integrity protection in three aspects:

(1) Device Integrity Check. Third-party App Server can judge the integrity
of the device based on the CheckRslt received in Step 8©. Such a check aims
at avoiding the risk of running on a compromised device (e.g., a rooted device
or a device whose bootloader is unlocked). The main checking items for device
integrity are listed in Appendix A.1.

(2) App Integrity Check. The Third-party App Server receives the AppInfo
in Step 8©. Mobile Service Server’s signature ensures that AppInfo has not been
tampered with. Such a check primarily aims at preventing app repackaging [6].
Checking items for app integrity are listed in Appendix A.2.

(3) Data Integrity Protection. In some cases, attackers may tamper with sen-
sitive data sent by the app client through a network man-in-the-middle (MITM)
attack. To mitigate this situation, in Step 3©, the Data is sent to Third-party App

Server after being signed. Thus, cheaters can no longer directly tamper with the
Data.

3.2 Details About SafetyNet

To utilize SafetyNet service, the Third-party App need to integrate the SafetyNet
SDK developed by Google. Figure 3 shows the protocol flow of the SafetyNet
attestation step-by-step. The whole process can be divided into three phases:

(1) Initialize. This phase corresponds to Step 1© to Step 3© in Fig. 2. In this
phase, Third-party App passes Data+Nonce to GMS Core through SafetyNet SDK.

(2) Obtain Signed Check Result. This phase corresponds to Step 4© to Step
6© in Fig. 2. Through this phase, GMS Core will obtain the CheckRslt signed by
GMS Server.

Specifically, after receiving the App’s invocation, GMS Core will download the
program file of a customized virtual machine (VM) (Step 5 to 6), and launch the
VM) (Step 7). The VM Program is an APK-compressed file named “the.apk”. It
will be saved in GMS Core’s private directory. After launched, VM will download
customized VM bytecode from GMS Server (Step 8 to 9) and retrieve some device
properties through executing these bytecode (Step 10). Finally, VM will get
DeviceInfo2.
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Fig. 3. The protocol flow of SafetyNet attestation.

On the other hand, GMS Core will also retrieve some other device properties
and get DeviceInfo1 (Step 10). Afterwards, GMS Core will calculate the SHA-256
value of a protobuf [66] message containing Data+Nonce, AppInfo, DeviceInfo1

and TimeStamp to get Digest and send Digest to VM (Step 11). The VM will sign
Digest and DeviceInfo2 using VK (short for “VM Key”). This VK is embedded
in the VM bytecode and the signing algorithm is HS256. We suppose that the
reason for carrying out the signing process within VM is because VM offers a
higher level of security. Through signing Digest, the device properties retrieved by
GMS Core and VM, namely DeviceInfo1 and DeviceInfo2, both get authenticated.

The VM-signed message will be forwarded to GMS Server in request for
CheckRslt (Step 13). GMS Server will check device integrity based on Device-
Info1 and DeviceInfo2 (Step 14), and respond with the signed CheckRslt and
Advice. Advice is a string explaining why the SafetyNet attestation fails, such as
“LOCK BOOTLOADER,RESTORE TO FACTORY ROM” (Step 15).

(3) Make Decision. This phase corresponds to Step 7© to Step 9© in Fig. 2. In this

phase, the signed CheckRslt will be forwarded to Third-party App Server (Step 16 to
18). App Server will verify the signature using Google’s public key [38], and make
decisions based on CheckRslt, AppInfo, and Nonce (Step 19 to 20).

3.3 Details About SafetyDetect

Similarly, the Third-party App needs to integrate the SafetyDetect SDK. Figure 4
shows the protocol flow of the SafetyDetect attestation.
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(1) Initialize. This phase has no significant difference from the initialization
phase of SafetyNet.
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Fig. 4. The protocol flow of SafetyDetect attestation.

(2) Obtain Signed Check Result. Similar to the corresponding phase of
SafetyNet, HMS Core will obtain the CheckRslt signed by HMS Server through
this phase.

Specifically, HMS Core will retrieve device properties, judge whether the
device has been compromised, and generate CheckRslt (Step 5). Afterwards,
by proceeding from Step 6 to Step 9, HMS Core will obtain a SK (short for
“SignKey”) from the HMS Server. This SK will later be used to sign CheckRslt.
In Step 6, HMS Core signs AppKey with RSK and sends it to HMS Server. Here,
RSK refers to “RootSignKey”, which is a signing key pre-stored in HMS Core

and remains fixed. The signing algorithm is HS256. Upon receiving the request
from HMS Core, HMS Server verifies the signature and AppKey (Step 7) and
responds with KIDSK, EncRCK(CK), and EncCK(SK) (Step 8). Here, KIDSK is the Key
ID of SK ; RCK refers to “RootCryptoKey” and is a fixed crypto key pre-stored
in HMS Core. HMS Core uses RCK to decrypt EncRCK(CK) and uses CK to decrypt
EncCK(SK) (Step 9). The algorithm used for encrypting CK and SK is AES-GCM,
so in Step 9, HMS Core will also verify the Tags during decryption.

Finally, HMS Core obtains SK, which will be cached and reused within a
period. HMS Core use it to sign CheckRslt (Step 10). HMS Server will verify the
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signature and AppKey (Step 11), sign CheckRslt with HK (short for “Huawei
Key”) and send it back (Step 12).

(3) Make Decision. Third-party App Server will verify Huawei’s signature with
Huawei CBG Root CA certificate [39] (Step 16), and make decisions (Step 17).

4 Bypassing MARA Protection

In this section, we will propose our approach to bypass MARA. In Sect. 4.1, we
first introduce the attack scenarios as well as the attacker’s capabilities under
each scenario. Afterwards, we illustrate the fundamental observation that lays
the basis for our bypassing approach in Sect. 4.2. From Sect. 4.3 to 4.5, we respec-
tively introduce the attack procedure targeting device integrity, data integrity,
and app integrity. In Sect. 4.6, we introduce the implementation of the attack.

4.1 Scenarios and Attacker’s Capabilities

Scenario 1: Bypassing Device Integrity Check. The scenario here is that
an official app has been installed on a compromised device, and the app uses
the MARA service. The attacker hopes to prevent the app server from detecting
any abnormalities in the device environment.

Attackers tend to run apps on such compromised devices for various rea-
sons. In one case, the phone owner is the attacker and wants to use some game
cheats [13]. In another case, the attacker is a malware [37] which has performed
privilege escalation and wants to monitor or interfere with other legitimate apps.

Attacker’s Capability. In this scenario, we assume that the attacker has root

privilege on the device. This assumption is reasonable because if the device is
compromised, it means that the device has already been rooted, bootloader-
unlocked, or flashed with a custom ROM. These circumstances all enable the
attacker to easily obtain root privilege.

Scenario 2: Bypassing App Integrity Check. This scenario involves a
repackaged app being installed on a non-rooted device and the app has inte-
grated the MARA service. The attacker aims to make the repackaged app appear
as the official version.

In reality, there are many cases of app repackaging. For example, some attack-
ers may repackage popular apps to embed advertisements [8] and trick users into
clicking on them.

Attacker’s Capability. In this scenario, we assume that the attacker can

repackage the app. Note that we neither require the attacker to have root priv-
ileges nor do we require them to possess the developer’s App Signing Key [48].

Scenario 3: Bypassing Data Integrity Protection. In this scenario, the
attacker hopes to tamper with the Data exchanged between the app and the
app server by performing a network man-in-the-middle attack. MARA service
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prevents attackers from directly intercepting and tampering with the network
data, as the attackers cannot forge the signature of MS Server.

In real-life situations, for important data such as the gamer’s score, apps
typically use HTTPS for transmission. Therefore, in order to perform network
interception, the attacker needs to insert a MITM certificate into the Android
System Trust Store [40] and inject code into the victim’s app process to bypass
Certificate Pinning [41]. Both of these two operations require root privilege.

Attacker’s Capability. In this scenario, we assume that the attacker has root

privilege on the device. Such an assumption is reasonable because if an attacker
is able to decrypt and manipulate HTTPS packets, they must have already
obtained root privilege.

4.2 Fundamental Observation

There is a fundamental observation that lays the basis for our attacks against
these MARA frameworks. The observation is that, most app servers do not

have a mandatory requirement for hardware-based check result. Through
reverse engineering, we found that the DeviceInfo sent by MS Core in Step 5©
of Fig. 2 contains two parts: software-based and hardware-based. The hardware-
based part will only be available if the device is equipped with TrustZone; oth-
erwise, only the software-based part will appear.

Taking GMS Core as an example. If the device supports hardware-based attes-
tation, the VM inside GMS Core will retrieve a certificate chain from the device’s
hardware-backed KeyStore [23] and put it into DeviceInfo2 (see Fig. 3). One cer-
tificate in this chain contains device information in its Extension Data, such
as the verifiedBootState and the verifiedBootHash. Therefore, through this cer-
tificate chain, the GMS Server can obtain the device’s bootloader status. For
example, if the bootloader is unlocked, the GMS Server may consider that the
device has been compromised.

We conducted tests on over 35,000 popular apps and found that, among the
apps where we have confirmed the use of MARA service, none of them has a

mandatory requirement for hardware-based check result. In other words, as
long as a benign software-based check result is returned, the app server will not
stop the app’s running or prompt any security risks. We suppose this is because the
apps aim to be compatible with a wider range of devices. This can lead to a down-
grade attack: if the attacker can make the app server believe that the device does
not support hardware-based attestation and always provide a benign software-
based check result to the app, then the attacker can bypass such MARA.

We can implement a “trusted device” to launch the attack: such a “trusted
device” is considered to be trusted by MS Server; but in reality, this “trusted
device” is compromised, and the attacker can use it to forge MS Core’s signature
on arbitrary data.

4.3 Bypassing Device Integrity Check

As described in Sect. 4.1, we assume that the attacker has root privilege. There-
fore, the attacker can tamper with the data sent and received by the Third-party
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Fig. 5. Bypassing device integrity check and data integrity protection.

App through code injection. The attacker aims to make the compromised device
be regarded to be trusted by MS Server. We use DeviceInfoc and DeviceInfot
to refer to the compromised device’s DeviceInfo and that of the trusted device,
respectively. CheckRsltc and CheckRsltt have corresponding meanings as well.
The process of bypassing device integrity check is illustrated in Fig. 5.

From Step 1© to Step 6© in Fig. 5, the attestation process is proceeding nor-
mally. The “Trusted Device” intercepts the return value (Step 8©) before App

receives it from GMS Core (Step 7©). The reason for choosing Step 8© instead
of an earlier step such as Step 3© is that, at Step 8©, the entire AppInfo can be
obtained by the “Trusted Device”, which facilitates the construction of the request
in Step 9©. Afterwards, the “Trusted Device” obtains the signed CheckRsltt from
the Mobile Service Server (Step 10©), and replaces the signed CheckRsltc with the
signed CheckRsltt (Step 11©).

4.4 Bypassing App Integrity Check

As described in Sect. 4.1, in this scenario, we assume that the attacker can repack-
age the app. The repackaged app is installed onto a non-rooted device. We use
AppInfoo and AppInfor to refer to the AppInfo of the official app and the repack-
aged app, respectively. The process of bypassing app integrity check is illustrated
in Fig. 7 in Appendix B.

4.5 Bypassing Data Integrity Protection

Due to the shared assumption between scenario 1 and scenario 3 (see Sect. 4.1),
we merge the two processes into a single Fig. 5 to save space. We use Datac and
Datao to refer to the compromised Data and the original Data, respectively. As
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described in Sect. 4.1, the attacker needs root privilege to intercept the HTTPS
data packets, which means that the device has been compromised. Therefore,
the “Trusted Device” also needs to replace DeviceInfoc with DeviceInfot to bypass
device integrity check.

4.6 Attack Implementation

Whether it is in scenario 1, 2, or 3, the implementation of the attack mainly
involves two parts: (1) Injecting code into the victim app to intercept the return
value from the MS Core; (2) Implementing a “Trusted Device” to sign on arbitrary
data.

Code Injection. We integrated the SDKs of SafetyNet and SafetyDetect, and
developed two demo apps as the victim apps. In scenario 1 and scenario 3,
since the attacker has root privilege on the device, we use Frida [42] to perform
dynamic instrumentation on the victim apps. In scenario 2, we decompile and
recompile the victim apps using ShakaApktool [43], and insert our logic into the
original apps through smali [46] code.

Implementation of “Trusted Device”. For HMS, we implement such a
“Trusted Device” through a protocol-emulating script. The script is implemented
in Python and runs on a laptop. For GMS, the DeviceInfo2 is generated by exe-
cuting the VM’s bytecode (Step 10 in Fig. 3) and the bytecode obtained from the
GMS Server is different each time (Step 9 in Fig. 3). Thus, in order to implement
a “Trusted Device”, we need an Android OS environment to support the running
of the VM. We implement such an environment based on Magisk [52]. Specifi-
cally, We patched an official firmware (ROM2) with Magisk, which will create a
virtual /system partition under the /data partition. Magisk then redirects GMS

Core’s calls from the original /system partition to the virtual /system partition
and unmounts any root privilege-related file systems to ensure that the retrieved
DeviceInfo is benign. We flashed this patched ROM into a OnePlus 5T phone,
allowing this virtual environment to be hosted on this phone.

5 Evaluation

5.1 Effectiveness of Our Bypassing Approach

Experimental Setup. To evaluate the effectiveness of our bypassing approach,
we tested our bypassing approach on 10 Android smartphones. The 10 devices
were running on different operating systems, ranging from Android 5 to Android
11, and covered different brands including Huawei, Xiaomi, OnePlus, Lenovo,
and Nokia. These phones are all rooted to facilitate the experiment on bypassing
device integrity checks. Details about the smartphones are listed in Table 3 in
Appendix C.

2 OnePlus5T Hydrogen 43 OTA 065 all 2012030405 03dba2c095454647.
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Experiment Steps. We install GMS Core and HMS Core (if they are not
pre-installed) on all these mobile phones and try to bypass the device integrity
check and app integrity check based on our approach. Testing for bypassing data
integrity protection is not necessary because (1) it has the same assumptions as
bypassing device integrity check (see Sect. 4.1); (2) according to Sect. 4.3 and 4.5,
as long as the attacker can implement a “trusted device” and bypass device
integrity check, he can control the Data+Nonce sent by the “trusted device” to
the MS Server and thus bypass data integrity protection.

Comparison with Existing Tools in the Wild. As a comparison, we
found the two most mentioned MARA bypassing implementations from the XDA
forum [49]: Universal SafetyNet Fix [50] and Shamiko [51]. Overall, both Univer-
sal SafetyNet Fix and Shamiko take effect by interfering with the MS Core’s
retrieval of the device information (during Step 4©a in Fig. 2). They
target the MS Core. In contrast, our method takes effect between Step 7©
and Step 8© in Fig. 2. Our method targets the victim app.

Table 1. Success rate of our bypassing approach compared with Universal SafetyNet
Fix and Shamiko.

Byapsssing

approach
Test item

Device No

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Universial

SafetyNet Fix

Device Int.
GMS � – � � � – – � – –

HMS � � � � � � � � � �

App Int. �

Shamiko
Device Int.

GMS � – � � � – – � – –

HMS � � � � � � � � � �

App Int. �

our approach
Device Int.

GMS � – � � � – – � – –

HMS � � � � � � � � � �

App Int. �

“Int.” is short for “Integrity”; �: Succeeded in bypassing check; �: Failed to bypass check; –:
Failed to invoke the attestation API due to MS Core’s internal error.

Experiment Results. The experiment results are shown in Table 1.

Bypassing Device Integrity Check. On some phones, compatibility issues
between the OS and the GMS Core have resulted in the failure of the SafetyNet
service. Although having tried multiple combinations of GMS Core and ROM,
we were still unable to make GMS Core execute correctly on these phones. Apart
from these 5 issues, our approach succeed in all the other 15 cases.

Regarding the Universal SafetyNet Fix and Shamiko, they succeed in 9 out
of 15 cases related to device integrity. Both Universal SafetyNet Fix and Shamiko
need to unlock the victim device’s bootloader. Therefore, they cannot be applied
to devices #4, #9, and #10 as the root privilege on these devices is obtained
through vulnerabilities (e.g., CVE-2020-0069 [53] on device #4), instead of
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through unlocking the bootloader and flashing a custom ROM. On device
#5, HMS Server returned the advice of “RESTORE TO FACTORY ROM” in
the CheckRslt, which might be due to the detection of abnormal SELinux
status. On device #8, both GMS and HMS detected abnormalities in the
bootloader status and returned advice like “RESTORE TO FACTORY ROM,

LOCK BOOTLOADER”.

App
Dataset

String 
Retrieving

Packing
Detection

without
string

with
packing

with string

Dynamic 
Running 

Pre-
processing

without packing

MS method 
invoked 

MS method
not invoked

with MARA

without MARA

Fig. 6. Overview of our analysis pipeline for identifying affected apps.

Bypassing App Integrity Check. Based on the assumption we presented
in Sect. 4.1, in this scenario, the attacker does not have root privilege but can
repackage the victim app. Therefore, neither Universal SafetyNet Fix nor Shamiko
can be used. Our method only requires the attacker to interfere with the victim
app, thus enabling the attacker to bypass the app integrity check through app
repackaging.

5.2 Large-Scale Measurement Study

First, we conducted a measurement study on real-world apps to identify apps
that use MARA services. Then, we analyzed involved security issues.

Dataset. To better reflect the usage of MARA frameworks worldwide, we
crawled all the applications in the top lists of APKPure [54] and Chinese 360
Mobile Market [55]. After removing the losses during download, we collected a
total of 35,245 apps, of which 20,253 came from APKPure (including 47 cate-
gories) and 14,992 came from the 360 Mobile Market (including 21 categories).

Measurement Approach. We employed a mix of static and dynamic analysis
mechanisms to identify the apps that use MARA services. The overall pipeline
of our approach is illustrated in Fig. 6. We first use static analysis to filter out
potential apps and then conduct dynamic analysis to further confirm the results.

(1) Preprocessing. There are two steps in preprocessing: further filter out
corrupted apps and extract APKs from XAPK [58] files for subsequent static
analysis.

(2) String Retrieving and Packing Detection.
The result of straightforwardly retrieving the signatures of classes and methods
is far from satisfying due to code obfuscation (e.g., ProGuard [56]) and app
packing [34].
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• Code obfuscation will remove the signatures of classes and methods from the
app code, thus we choose to retrieve constant strings. We use Apktool [44]
to decompile the app’s code and use grep [45] with regular expressions to
retrieve strings inside the MARA SDKs. Apps with string features will be
dynamically analyzed.

• App packing can hide almost all static code features, including constant
strings. To tackle this issue, we implemented a packing detector. For apps
without string features, if the packing detector identifies that it has been
packed, we will also conduct dynamic detection on it. The packing detec-
tor is implemented based on Soot [47] and integrates the signatures of 11
mainstream packers.

(3) Dynamic Running. We use Monkey [57] to generate UI events and drive
the tested app to run on a OnePlus 5T device. Meanwhile, we use Frida [42] to
hook the MS process. If the app invokes the MARA service during its running
process, the corresponding methods in the MS process will be invoked. To prevent
the MS process from being killed and causing our hooking to fail, we regularly
use an app to call the MS process to keep it active at all times. In addition,
we noticed that many apps utilize the SafetyNet service when users log in via a
Google account. Therefore, we logged in to our Google account on the device in
advance to facilitate triggering the SafetyNet service.

Table 2. Overview of app measurement results

MARA Total
Apps

Static Analysis Dynamic Analysis

String
Retrieving

Packing
Detection

SafetyNet 35,245 potential 4,296 11,234 use 73

don’t use 11,161

unsuspicious 30,949 24,011

SafetyDetect 35,245 potential 226 7,158 use 31

don’t use 7,127

unsuspicious 35,019 28,087

Results and Findings. Our app measurement results are shown in Table 2. In
total, among the 35,245 top Android apps, we identified 73 apps that have used the
SafetyNet service and 31 apps using the SafetyDetect. These apps include some top
most popular applications and games, such as TikTok Lite, Huawei Wallet, China
Merchants Bank, Pokémon GO, NBA LIVE, and so on. Detailed information on our
measurement result is available at https://github.com/zhouziyi1/MARA.

https://github.com/zhouziyi1/MARA
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To detail, when detecting SafetyNet-related apps, our string retrieving pro-
cess enables us to locate 4,296 candidates. The packing detection process helps
us locate 6,938 additional candidates. To this end, we have a total number of
11,234 candidates through the static analysis process. Our dynamic running con-
firmed that 73 out of these 11,234 apps indeed invoke the SafetyNet service. For
SafetyDetect, we ultimately confirmed 31 apps.

Through further manual inspection, we found that most MARA invocations
occur when users log in. For example, among the 31 SafetyDetect-related apps,
24 apps call SafetyDetect service when users log in, while the remaining 7 apps
call the service as soon as the user launches the app.

Case Studies

(1) Pokémon GO. Pokémon GO [9] is one of the most popular and highest-
grossing mobile games worldwide, with over 572 million downloads [11] and $6
billion in player spending [10]. It allows players to catch nearby “Pokémon” based
on players’ geographical location. If players can use mock locations instead of
real ones, they can cheat in the game. One type of mock location tool [59–
62] does not require root privilege, but they can be easily blocked by Pokémon
GO. Another type of mock location tool [63] requires root privilege and is more
difficult to detect. To block such mock location tools, Pokémon GO utilizes the
SafetyNet service. Specifically, when a user logs into Pokémon GO with a Google
account, Pokémon GO calls the SafetyNet API and checks the integrity of the
current device. If the current device has been rooted, Pokémon GO prohibits
the user from logging in. We implemented our attack method (as described in
Sect. 4.6) on a rooted Mi 8 phone and successfully bypassed Pokémon GO’s root
detection. This allows us to successfully perform location spoofing using Fake
GPS Location Spoofer [63].

(2) Huawei Wallet. Huawei Wallet is a payment app with over 100 million
active users [64]. To prevent root malware (such as [37,53,65]) from threatening
users’ property and privacy, Huawei Wallet checks the device’s integrity using
the SafetyDetect service right after app’s startup. If the device doesn’t meet the
security requirements, Huawei Wallet displays a prompt to the user. The app will
only continue running after the user confirms the risk. We successfully deceived
the SafetyDetect service with our bypassing approach (as described in Sect. 4.6)
on a OnePlus 9R phone, making it difficult for users to realize the existence of
malware. Afterwards, malware with root privilege can access files in the private
directory of Huawei Wallet, stealing user account information, program logs,
cookies, and other sensitive data.

6 Conclusion

In this paper, we conducted an in-depth security study on Google SafetyNet and
Huawei SafetyDetect, two mainstream Manufacturer-provided Android Remote
Attestation (MARA) frameworks, and found a new way to bypass their integrity
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check. Compared with existing bypassing implementations in the wild, our bypass-
ing approach can succeed on more devices. To further evaluate the real-world
impact of our identified issues, we performed a large-scale measurement over a
set of top popular apps, and analyzed related security implications to the apps
that integrate MARA service.
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Appendix A Integrity Checking Items

A.1 Device Integrity Checking Items

• SU Files
• SeLinux Status

• Bootloader Status
• Root Frameworks

• Hooking Frameworks
• Emulators

A.2 App Integrity Checking Items

• App Package Name • Apk File Digest

• App Certificate Fingerprint
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Appendix B Bypassing app integrity check

Fig. 7. Bypassing app integrity check.

Appendix C Device details

Table 3. Details about the Android devices used in Sect. 5.1

No Model number Android
version

Build number Bootloader
status

GMS
version

HMS
version

#1 OnePlus 9R 11 Oxygen OS 11.2.4.4.LE28DA unlocked 21.06.13 6.8.0.332

#2 Xiaomi Mi CC9 Pro 11 MIUI 13.0.4 Stable
13.0.4.0(RFDCNXM)

unlocked 21.21.16 6.8.0.332

#3 Oneplus 5T 10 H2OS 10.0.3 unlocked 22.12.15 6.8.0.332

#4 Nokia X5 9 00CN 2 15A SP02 locked 22.12.15 6.8.0.332

#5 Xiaomi Mi 8 9 MIUI 10 9.8.22 Beta unlocked 22.12.15 6.8.0.332

#6 OnePlus 5 9 H2OS 9.0.5 unlocked 22.12.15 6.8.0.332

#7 Motorola P30 8.1.0 ZUI 4.0.374 Stable unlocked 20.12.16 6.8.0.332

#8 Xiaomi Mi 5 8.0.0 MIUI 10.8.11.22 Beta unlocked 20.12.16 6.8.0.332

#9 Huawei Mate 9 7 EMUI 5.0 locked 10.2.98 6.10.4.300

#10 Lenovo K5 Note 5.1.1 VIBE UI V3.0 locked 10.0.84 6.8.0.332
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