
ARCTURUS: Full Coverage Binary Similarity Analysis with

Reachability-guided Emulation

ANSHUNKANG ZHOU, Hong Kong University of Science and Technology, Hong Kong, China

YIKUN HU, Shanghai Jiao Tong University, Shanghai, China

XIANGZHE XU, Purdue University, West Lafayette, USA

CHARLES ZHANG, Hong Kong University of Science and Technology, Hong Kong, China

Binary code similarity analysis is extremely useful, since it provides rich information about an unknown

binary, such as revealing its functionality and identifying reused libraries. Robust binary similarity analysis is

challenging, as heavy compiler optimizations can make semantically similar binaries have gigantic syntactic

differences. Unfortunately, existing semantic-based methods still suffer from either incomplete coverage or

low accuracy.

In this article, we propose ARCTURUS, a new technique that can achieve high code coverage and high

accuracy simultaneously by manipulating program execution under the guidance of code reachability. Our

key insight is that the compiler must preserve program semantics (e.g., dependences between code fragments)

during compilation; therefore, the code reachability, which implies the interdependence between code, is

invariant across code transformations. Based on the above insight, our key idea is to leverage the stability

of code reachability to manipulate the program execution such that deep code logic can also be covered in

a consistent way. Experimental results show that ARCTURUS achieves an average precision of 87.8% with

100% block coverage, outperforming compared methods by 38.4%, on average. ARCTURUS takes only 0.15

second to process one function, on average, indicating that it is efficient for practical use.

CCS Concepts: • Security and privacy→ Software reverse engineering;

Additional Key Words and Phrases: Binary code similarity, emulation, reverse engineering, program analysis

ACM Reference Format:

Anshunkang Zhou, Yikun Hu, Xiangzhe Xu, and Charles Zhang. 2024. ARCTURUS: Full Coverage Binary

Similarity Analysis with Reachability-guided Emulation. ACM Trans. Softw. Eng. Methodol. 33, 4, Article 96

(April 2024), 31 pages. https://doi.org/10.1145/3640337

1 INTRODUCTION

Binary similarity analysis answers to what extent two pieces of binary code are similar and de-
termines if they come from the same codebase. It is a fundamental technique in various security
applications such as vulnerability discovery [15, 29–31], malware detection [13, 42, 60, 61], patch
analysis [45, 96, 99], forensics [56, 67], and component analysis [44, 72, 74, 91, 95]. For example,

Authors’ addresses: A. Zhou and C. Zhang, Hong Kong University of Science and Technology, Clear Water Bay, Sai Kung,

Hong Kong, China; e-mails: {azhouad, charlesz}@cse.ust.hk; Y. Hu (Corresponding author), Shanghai Jiao Tong University,

Shanghai, China; e-mail: yikunh@sjtu.edu.cn; X. Xu, Purdue University; e-mail: xu1415@purdue.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1049-331X/2024/04-ART96

https://doi.org/10.1145/3640337

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.

https://orcid.org/0000-0001-8719-1070
https://orcid.org/0000-0002-2035-7176
https://orcid.org/0000-0001-6619-781x
https://orcid.org/0000-0001-6417-1034
https://doi.org/10.1145/3640337
mailto:permissions@acm.org
https://doi.org/10.1145/3640337
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3640337&domain=pdf&date_stamp=2024-04-18


96:2 A. Zhou et al.

a recent study shows that 95% of software applications reuse third-party components [2]; there-
fore, identifying code fragments that are similar to known codebases allows us to apply existing
information to facilitate code understanding.

Considerable research efforts have been dedicated to the binary similarity analysis problem
due to its importance. Existing works mainly tackle the problem from two different angles.
First, some approaches [3, 20, 22, 33, 86] extract syntactic or structural code features such as
control-flow graphs (CFGs) and instruction sequences to compare binary code. However, they
are not robust enough, because binaries compiled from the same source code could have different
syntax and structures due to various code transformations adopted by compilers, such as loop
unrolling [23] and common expression elimination [78]. Second, some methods identify similar
code fragments by reasoning about their functionalities (semantics), which are the input/output
values of procedures [19, 37, 58]. They usually work by executing the target code with generated
inputs to collect runtime values, and two pieces of code are considered similar if their runtime
values have similarities. They are more robust against code transformations, as code with similar
semantics must have similar dynamic behaviors under the same input regardless of synthetic
differences [28]. However, due to the inherent coverage issue in the dynamic analysis [36],
these methods can hardly distinguish programs that have similar shallow paths [70] (e.g., error
handling code) but with different deeply embedded behaviors [48]. Although IMF-Sim [80]
leverages advances in fuzzing techniques to increase code coverage, it only covers 31.8% of the
instructions.

Several approaches [17, 28, 65] propose to increase code coverage by overriding the intended pro-
gram logic (branches) during the execution, which is also referred to as forced execution [64]. They
usually traverse the code in a way that only considers the CFG structure. For example, BLEX [28]
executes the target function repeatedly, starting from so far uncovered instructions until every in-
struction is executed at least once. However, since code optimizations and transformations could
radically modify the program CFGs, forced execution-based techniques cannot guarantee consis-
tent runtime behaviors between semantically similar but synthetically different code; thus, the
accuracy is still limited [26, 54].

In this article, we propose ARCTURUS, a new technique that can achieve high code coverage
and high accuracy simultaneously by manipulating program execution under the guidance of
code reachability. Our key insight is that the compiler must preserve program semantics (e.g.,
dependences between code fragments) during compilation; therefore, the code reachability, which
implies the interdependence between code, is invariant across code transformations. Intuitively,
for two operations that share a data or control dependence, there must exist a path that sequen-
tially executes them, which implies that the second operation is reachable from the first one. The
compiler must ensure that no dependences are broken if it attempts to modify the relative order
or reachability relations of two operations. However, precisely identifying all dependences is very
hard because of the imprecise pointer analysis, so the compiler must assume that operations may
have dependences unless it can prove otherwise [10]. For example, loop-invariant code motion
only moves statements whose definitions are all outside the loop, otherwise, the program may not
work correctly [10]. Therefore, code reachability relations are invariant across binaries that are
compiled from the same codebase. Our study in Section 3.2 also confirms our insight. Based on
the above insight, our key idea is to leverage the stability of code reachability to manipulate the
program execution such that deep code logic can also be covered in a consistent way. Since the set
of code that can reach a specific program point does not change across compiler transformations,
our method constrains the execution within this set. In Section 5, we formally prove that our
method guarantees consistent runtime behaviors between semantically similar but synthetically
different code fragments.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:3

We implement a prototype in C/C++ and conduct a large-scale evaluation with representative
datasets containing 820,021 functions compiled from 16 real-world projects with different compi-
lation settings. Experimental results show that ARCTURUS achieves an average precision of 87.8%
with 100% block coverage, outperforming compared methods by 38.4%, on average. In addition,
it takes only 0.15 second to process one function, on average, indicating that ARCTURUS is effi-
cient for practical use. The extensive case studies further demonstrate its practical applications in
known vulnerability detection and binary version identification.

In summary, we make the following contributions:

— We develop a dynamic binary similarity analysis framework that can achieve both complete
code coverage and precise analysis results by using a novel reachability-guided emulation
technique.

— We formally prove that the reachability-guided emulation leads to the same execution results
among semantically equivalent binaries.

— We implement a prototype ARCTURUS and evaluate it on 820,021 functions from 16 real-
world projects. Experimental results show ARCTURUS achieves a precision of 87.8% in func-
tion matching, which outperforms the state-of-the-art methods by 38.4%, on average. In ad-
dition, it takes only 0.15 second to fully cover one function, on average.

2 PROBLEM STATEMENT

In this article, we focus on measuring the semantic similarity between binary functions to deter-
mine if they are compiled from the same code base. In our context, semantics is a particular case
that concerns input/output behaviors of the program execution [24, 63, 65], which is defined as
follows:

Definition 2.1 (Semantics). The semantics of a binary function is defined as its behaviors in terms
of input and output values. An input value is any variable or memory content that influences the
output values. An output value is any variable, memory content, and call to library functions that
can influence the external environment.

For example, for a specific binary function, its parameter values are its inputs, while values
written to the heap memory are its outputs.

We define the semantic similarity for two functions in regard to their input-output relations
as follows:

Definition 2.2 (Semantic Similarity). Two binary functions are said to be semantically similar if
their semantics (input/output) values have intersections (similar).

We state the problem of binary similarity analysis that we want to solve in this article as
follows:

Definition 2.3 (Binary Similarity Analysis). Given two binary functions F1 and F2, we aim to ex-
tract and compare their semantics S1 and S2 such that the similarity between S1 and S2 is maximized
if F1 and F2 originate from the same source code, and minimized otherwise.

3 MOTIVATION

In this section, we use an example to illustrate the limitations of existing dynamic methods (Sec-
tion 3.1), our insight (Section 3.2), and technique (Section 3.3). Figure 1(a) and 1(b) show the
source code of functions foo and bar. They both have the functionality of allocating a chunk of
heap memory, writing values to the heap, and returning a pointer to the heap memory. However,
their semantics are different in that foo writes values based on conditions, while bar writes

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:4 A. Zhou et al.

Fig. 1. Motivating example. Both the instruction addresses and the block names are ordered according to

the actual code layout in binaries. The stack offsets are represented by the corresponding variable names.

The flag and key parameters are stored in the edi and esi registers, respectively.

values purely based on the input arguments. Figure 1(c) and 1(d) show the CFGs and part of the
assembly code for the foo when compiled with different compilation settings. The semantically
equivalent basic blocks (i.e., Bm and B′n) are marked with the same subscript. B′3,4 corresponds
to the combination of B3 and B4, because the tautology condition at Line 13 in Figure 1(a) is
removed.

3.1 Limitations of Existing Methods

Native Execution. To measure the similarity of two functions, naive dynamic methods directly
execute them with identical inputs to capture their semantics [40, 80]. However, these methods
still suffer from the coverage issue [80] and can hardly distinguish programs that have similar
shallow paths [70] (e.g., error handling code) but with different deeply embedded behaviors [48].
Therefore, they could draw the wrong conclusion that two binary functions are from the same
code base.

Example 3.1. Consider the two functions in Figure 1(a) and 1(b). Suppose their two arguments
are assigned with 0x10 and 0x20 for the execution, triggering a similar path, i.e., Lines 2–10 in
Figure 1(a) and Lines 2–4 in Figure 1(b). Naive methods might conclude that foo and bar are
similar, which is not true, because the executed paths are unable to capture semantics of all code
in the bar.

Forced Execution. Some dynamic approaches try to increase the code coverage by overriding
the intended program logic [17, 28, 65] according to the CFG structures. For example, the state-of-
the-art technique BLEX [28] works by repeatedly executing the first un-executed instruction until
every instruction has been executed at least once.

However, since CFGs could be radically modified by code transformations, these approaches
cannot guarantee consistent execution results even for semantically similar code. Therefore, their

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:5

Table 1. Program States before Executing B6/B
′
6 (State@B6/B

′
6)

BLEX ARCTURUS

Clang -O0 GCC -O3 Clang -O0 GCC -O3

⟨B0,B1,B2⟩ – ⟨B′0,B
′
1,B
′
2⟩ – ⟨B0,B1,B2⟩ – ⟨B′0,B

′
1,B
′
2⟩ –

⟨B3,B6⟩ val = 0x512

⟨B′3,4,B
′
6⟩

val = 0x612

key = 0x100
⟨B0,B1,B6⟩

flag = 0x10

val = 0x16

key = 0x20

⟨B′0,B
′
1,B
′
6⟩

flag = 0x10

val = 0x16

key = 0x20
⟨B4,B6⟩

val = 0x200

key = 0x100

B5 – B′5 – ⟨B0,B3,B4,B5⟩ – ⟨B′0,B
′
3,4,B

′
5⟩ –

⟨Bi , Bj ⟩ denotes one executed path that goes through Bi and Bj , respectively.

accuracy is even lower than the native execution-based methods; our evaluation shows that BLEX
can only achieve an accuracy of 61% while the native one can reach 91%.

Example 3.2. To compare two binary functions in Figure 1(d) and 1(c) that are compiled from
foo with different configurations, BLEX first initializes their arguments (suppose to be 0x10 and
0x20) and executes the two functions. Table 1 shows paths that are executed by BLEX and variable
values (behaviors) before executing B6/B′6 for two CFGs. For the CFG in Figure 1(c), after triggering
the default path ⟨B0,B1,B2⟩, BLEX starts the execution from B3. It assigns the uninitialized vari-
able cond with a concrete value (we use 0x100 in this example) to ensure the continuation of the
execution. The final path is ⟨B3,B6⟩, and the value of val before executing B6 is 0x512. After that,
BLEX executes from B4 and B5 separately to cover the remaining code. However, for Figure 1(d),
although B′0, B′1, B′2, and B′5 are covered in the same way, the value of val before B′6 is 0x612,
which is different from that in Figure 1(c). As a result, the two functions might not be matched
correctly.

Other methods that achieve full code coverage by selecting paths with some self-defined path
exploration strategies [17, 35, 64, 94] also share similar limitations with BLEX, as illustrated above.
They do not provide any guarantee for the runtime behavior consistency between two semantically
similar functions, which might severely affect the similarity analysis results.

3.2 Insight

Given the limitations of existing methods discussed above, the main challenge to a robust simi-
larity analysis technique is how to achieve high code coverage and behavior consistency between
semantically similar code simultaneously.

Our technique is inspired by two key insights. First, the reachability relations reflect control or

data dependence between code. For two operations that share a dependence, there must exist a path
that sequentially executes them so the second operation is reachable from the first one.

Example 3.3. In Figure 1(c), instructions in B6 have data dependence with instructions in B3.
Thus, B6 is reachable from B3.

Second, code transformations must not change code dependences, thus the code reachability is

stable across semantically similar binaries. The compiler must ensure that no dependencies are
broken if it attempts to modify the reachability relation between two operations. However, pre-
cisely identifying all dependencies is very hard because of the imprecise pointer analysis, so the
compiler must assume that operations may depend on each other unless it can prove other-
wise [10].

Example 3.4. After the optimization (Figure 1(d)), although B3 is merged into B′3,4, B′6 is still

reachable from B′3,4.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:6 A. Zhou et al.

We define the code reachability on CFGs as follows:

Definition 3.1 (Code Reachability). A CFG nodevi is said to be reachable from another CFG node
vj if there exists a path that starts from vj and goes through vi , denoted as vj � vi . Otherwise, vi

is unreachable from vj , denoted as vj ̸ vi .
Additionally, ifvj � vi , then a given program pointp insidevi is also reachable fromvj , denoted

as vj � p.

Example 3.5. In Figure 1(c), there exist two paths from B3 to B6 and one path from B4 to B6, which
means that B6 is reachable from B3 and B4. In Figure 1(d), B′6 corresponds to B6 in Figure 1(c). After
compiler optimizations (Figure 1(d)), although B3 and B4 are merged into B′3,4, B′6 is still reachable

from B′3,4, which indicates that their reachability relations are still preserved.

To clearly understand our insight, we conduct a study to measure the stability of code reach-
ability across binaries compiled from different compiler settings. Specifically, we take -O0 com-
piled (unoptimized) binaries as references and compare the reachability results of -O3 compiled
binaries with them. For each CFG node in binaries, we calculate the set of nodes that can reach it
and the set of nodes that cannot reach it. To perform the comparison, we leverage the debug infor-
mation to map basic blocks in binaries with source code lines. If we can find two corresponding
nodes in two binaries (line numbers that are deleted in optimized binaries are excluded), then we
calculate the ratio of the intersection between the sets of reachable line numbers and the sets of
unreachable line numbers.

In the study, we compile all the projects used in our evaluation (details in Table 2) with two
compiler versions (GCC v7.5.0 and Clang v8.0.0) and two optimization levels (-O0 and -O3). We
choose these two optimization levels because they are thought to be able to maximize differences
between binaries [66]. We also disable function inlining to measure only intra-procedural reach-
ability. Figure 2 shows the comparison results between -O0 and -O3 optimized binaries. On aver-
age, the reachability set intersection ratio between different binaries is as high as 97.68%, which
matches up with our insight. After manually analyzing false cases, we found that code motion is the
prominent reason leading to mismatches. Code motion affects reachability by moving statements
upwards or downwards. We only discuss basic block-level code motion here, since moving code
inside the block does not affect block-level reachability. There are mainly two kinds of statements
that are usually moved. First, the compiler can move variable assignments. It usually happens
when a variable is assigned in the function entry but used in later code. Under this situation, the
compiler will move the variable assignment just before its uses, causing a mismatch of reachable
sets. Second, if a function has multiple return statements, then the compiler might merge them
and transform the original statements into assignments, thus causing reachable sets mismatching.

3.3 Our Technique

Based on the above insight, we propose a new technique that leverages the stability of code reacha-
bility to manipulate the program execution such that deep code logic can be covered in a consistent
way. Since the set of code that can reach a specific program point does not change across compiler
transformations, our key idea is to constrain the execution within this set. In Section 5, we formally
prove that our method guarantees consistent runtime behaviors between semantically similar but
synthetically different functions.

Example 3.6. We use the motivating example to demonstrate our technique. As shown in Table 1,
for the CFG in Figure 1(c), after covering the default path ⟨B0,B1,B2⟩, ARCTURUS sets one uncov-
ered basic block as the target according to the reverse topological order of the CFG. By setting
B6 as the target, it starts executing from B0 and performs reachability-guided emulation to cover

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:7

Table 2. Projects Adopted in the Evaluation

Programs LOC # Function # Block

ImageMagick-7.0.10 570,420 3,264 190,999

binutils-2.35 4,547,167 2,750 73,525

busybox-1.33.0 198,259 2,710 88,406

coreutils-8.30 749,329 1,313 42,292

diffutils-3.7 178,327 3,322 8,942

gpac-1.0.1 785,503 8,753 394,274

htslib-1.10.2 62,173 1,278 31,672

libarchive-3.4.4 232,147 1,823 34,189

libxml2-2.9.9 538,015 2,095 88,434

nginx-1.18.0 139,459 2,299 31,111

openssl-1.0.1u 376,774 4,523 142,888

putty-0.74 143,314 2,103 34,651

sqlite-3.35.0 213,820 2,442 93,105

tcpdump-4.10.0 161,929 1,691 47,863

transmission-3.00 368,670 2,812 38,424

vim-8.2 866,141 5,571 238,596

The second column indicates the size of the source code.

The third and fourth columns show the average number

of functions and basic blocks in the compiled binaries.

Fig. 2. Reachability compatibility between -O0 and -O3 optimized binaries.

B6. In instruction 14, the default path goes through the false branch to B2, which is unreachable
to the target block B6. Therefore, ARCTURUS directly sets instruction 33 to be the next one for
executing and leaves the execution context untouched. By doing this, the executed path will be
⟨B0,B1,B6⟩, and the variable values before B6 is (flag=0x10, val=0x16, key=0x20). The final output
of the above path will contain a memory write to heap[1] with the value of val variable (0x16).
Similarly, to cover B′6 in Figure 1(d), the executed path will be ⟨B′0,B

′
1,B
′
6⟩with the output that also

contains a memory write to heap[1] with the value of 0x16. Since the output values of the two
functions are the same, ARCTURUS can match them correctly.

4 DESIGN

4.1 Overview

To obtain the similarity score between two binary functions, ARCTURUS mainly works in three
steps: pre-processing, emulation, and comparison. Figure 3 shows the workflow of ARCTURUS.
Both the target and reference binary code are processed in the same way. To compare the target

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:8 A. Zhou et al.

Fig. 3. Workflow of ARCTURUS.

binary function with the reference one, assuming the reference code has been analyzed, the target
code is analyzed as follows:

— Pre-processing & Lifting. The target binary code is lifted into the LLVM [5] intermediate

representation (IR) by using a binary lifter [18]. ARCTURUS further adopts sophisticated
optimizations provided by LLVM to re-optimize the IR. The purpose is to reduce the number
of instructions significantly to boost the emulation process.

— Emulation. ARCTURUS captures various kinds of runtime behaviors during the emulation
and uses them as semantic features for similarity comparison. It first performs the reacha-
bility calculation for all intra-procedural blocks of each function. A backward graph reacha-
bility algorithm is used to compute the set of blocks that can reach each basic block. Then,
the emulation engine is invoked to execute the target code and collect its runtime behav-
iors, which are stored as the semantic features of the function. The engine emulates each
function using a set of predefined parameter values. It covers all intra-procedural blocks by
dynamically forcing a set of branch outcomes under the guidance of reachability.

— Similarity Comparison. The extracted features of the target code are compared with refer-
ence features extracted from reference functions in the function pool to search for the most
similar one. The similarity score between two functions is calculated by comparing their
semantic feature sets using Jaccard containment similarity [28, 40, 80]:

J(S1,S2) =
∣S1 ∩ S2∣
∣S1 ∪ S2∣

, (1)

where S1 and S2 represent the semantic features of the two functions, respectively. The cal-
culated score is a numeric value ranging from 0 to 1. Two functions are considered more
similar when the score is closer to 1. ARCTURUS generates a list of similar functions by
ranking the Jaccard Index in descending order.

The remainder of this section is organized as follows: We first introduce semantic features used
to compare binary functions. Then, we discuss the emulation engine. At last, we discuss the algo-
rithm of reachability-guided emulation.

4.2 Semantic Features

ARCTURUS captures various kinds of runtime behaviors (input/output values) during the emula-
tion and uses them as semantic features for similarity comparison. However, not all runtime values
are strongly related to program functionalities and can be easily altered by code transformations.
For example, the code in Figure 1(c) heavily uses the stack memory to load and store intermedi-
ate values for other operations. By contrast, in Figure 1(d), the compiler optimized the code such
that the assembly code uses registers to access all the variables instead of the stack frame. Despite

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:9

this, there exist behaviors that cannot be changed by the compiler and are suitable for revealing
the real program semantics [28, 40, 80]. For example, in both Figure 1(c) and 1(d), the calls to the
heap allocation function and the values written to the heap memory are the same. Specifically, the
following behaviors are recorded as the semantic features of the target function to alleviate the
syntactic and structural gaps caused by code transformations during emulation:

Heap/global memory access. The read/write values of heap/global memory reflect the seman-
tics of the code and are unlikely to be influenced by code transformations. For a binary function, the
global variables are stored in data sections (e.g., .data), while the heap memory is dynamically
allocated by library functions (e.g., malloc). Additionally, ARCTURUS regards memory regions
pointed to by pointer parameters as the heap memory.

Example 4.1. Both Figure 1(c) and 1(d) c-ontain instructions that write values to the allocated
heap memory. In Figure 1(c), the address of the heap memory is stored in rcx and instruction 35
in B6 writes the value of eax to [rcx+8]. Upon emulating instruction 35, ARCTURUS will record
the value of eax and the address of [rcx+8] as the features.

Invoked library functions. Symbol names of library functions persist in stripped binaries,
because they are necessary for resolving external function calls. Therefore, ARCTURUS records
library functions’ names as the code feature at their call sites.

Example 4.2. After binary lifting, Instruction 4 in Figure 1(c) will be translated to a statement like
%ret=call malloc(0x20). ARCTURUS records a single name malloc as the semantic features.

Function return value. The function return values are also unlikely to be influenced by code
transformations. For internal functions, the return value is stored into specific registers in function
bodies according to the calling convention of the target architecture, e.g., integer return values
on x64 are returned in RAX if 64 bits or less. ARCTURUS models behaviors of common external
functions and takes possible alias library functions as the same under some conditions (e.g., puts
and printf). Therefore, ARCTURUS is able to retrieve function return values at all call sites.

Example 4.3. For the Instruction 4 in Figure 1(c), its call site looks like %ret=malloc(0x20).
ARCTURUS assigns a heap address to %ret and records the value of %ret as the semantic features.

4.3 Emulation Engine

According to the formal semantics of LLVM statements [98], ARCTURUS develops an emulation
engine to reason about program execution without interfering with the underlying operating
system. Compared with concrete execution that relies on real CPUs, the advantages of emulation
are twofold. First, emulation is much more efficient than heavy-weight dynamic binary instrumen-
tation [55], because emulation omits many system details and discards runtime binary translation.
In our experiments, ARCTURUS only takes 0.03 s to emulate one function, but concrete execution
needs 11.37 s to process one function. Second, emulation allows us to take full control of the
execution procedure and obtain more comprehensive runtime information. Different from a
symbolic interpretation [52], our emulation engine assigns all variables with concrete values to
capture program execution semantics. A handler is defined for each LLVM statement in terms
of how they update intermediate values and memory. ARCTURUS invokes different handlers
for statements during emulation and updates the program counter according to the handler
results.

Memory Management. ARCTURUS defines its own memory model to handle memory access.
It partitions the whole memory into three disjoint areas, i.e., global memory, stack memory, and
heap memory. Before emulation, global memory is initialized according to the global variables

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:10 A. Zhou et al.

declared in LLVM IR. It maintains a stack to record the local execution context of each call site.
Once a function is called, a clean execution environment is pushed to the stack. All local variables
are allocated on the stack memory region. After the function returns, it cleans the stack memory
allocated by the local execution context. Heap memory is dynamically allocated based on a call-
to-allocation function (e.g., malloc). Since the emulation process usually crafts random values as
the function input, it is possible that some memory accesses do not have pre-allocated values and
become invalid [64]. To solve this problem and make the emulation continue, ARCTURUS adopts
an “on-demand memory allocation” strategy; that is, once an invalid memory address is accessed,
it allocates new memory on the accessed address and fills it with a pre-defined dummy value.

Recursion and Loops. The emulation process could also be trapped into recursive calls and
infinite loops. To prevent this, ARCTURUS monitors the executed traces of the target program to
detect recursion and loops. To prevent recursive function calls, ARCTURUS checks the call stack
at each call site. Upon calling a function, it checks if the callee function exists in the call stack. If
so, then it directly skips this call site. For loops, ARCTURUS only unrolls them once to prevent
getting stuck into infinite loops. Before emulation, ARCTURUS analyzes all loops to extract their
loop headers and exit nodes [69]. During emulation, ARCTURUS maintains a loop context to track
all loop accesses; once a loop is iterated for more than one time, ARCTURUS will break the loop
by taking the exit node.

Internal Function. Since the function body of the internal function is present in the lifted
code, ARCTURUS is able to jump to the function entry at its call sites and emulate statements
one-by-one using the technique described above until encountering the return instruction.

External Function. For external functions, since their definitions are unknown, we cannot
emulate them directly. Therefore, ARCTURUS wraps some common external functions to extract
semantic features better. For common alias library functions such as “printf” and “__printf_chk,”
ARCTURUS models them in the same way to avoid different emulation results. To support custom
memory management, ARCTURUS wraps memory allocation and de-allocation functions (such as
malloc and free) to manage heap memory. For common I/O functions such as getc, we return a
sequence of pseudo-random numbers to capture their calling “contexts,” meaning that we are able
to distinguish between different call sites of the same function. For other functions that are not
modeled, we return a default dummy value.

Exception Handling. ARCTURUS performs emulation with possible invalid inputs and paths,
so it is possible to trigger exceptions such as null pointer deference. Since ARCTURUS leverages
an emulation engine to traverse the code instead of the actual execution on CPUs, all exceptions
can be suppressed so the execution continues. Additionally, exceptions can also produce valuable
semantic features. For example, for the null pointer dereference, ARCTURUS will record that the
code reads memory from address 0x0.

4.4 Reachability-guided Emulation

The reachability-guided emulation process is described in Algorithm 1. It takes the LLVM IR of
the target function F as the input and outputs its semantic set SF .

Initialization. ARCTURUS initializes the function inputs by assigning random values toF ’s pa-
rameters. In the lifted code, F ’s parameters are declared as an ordered list of values. ARCTURUS
uses a pseudo-random number generator to generate a deterministic sequence of values, which
guarantees that each position in the sequence always has the same value each time. Therefore,
ARCTURUS can ensure that parameters in the same positions of the ordered list are always as-
signed with the same initial value (Line 1). Since precise type information is lost in the binary
code, ARCTURUS simply assigns integer values to all parameters, and possible invalid memory
access is handled in the way described in Section 4.3.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:11

ALGORITHM 1: Reachability-guided Emulation

Input: Target Function F
Output :Function semantic feature set SF

1 I ← Init_Input() ▷ generate input values for F

2 MR ← Calculate_Reachability(F) ▷Map of basic blocks to their reachable blocks

3 Q ← Reverse_Topological_Sort(F) ▷ sort basic blocks of F in reverse topological order

4 whileQ ≠ ∅ do

5 BT ← Pop_Front(Q)

6 while BT has been covered before do

7 BT ← Pop_Front(Q) ▷ get the first uncovered block inQ

8 E ← Init_Env() ▷ initialize execution environment

9 S ← the first statement of F

10 while S is legal do

11 SF ,E ← SF ∪ emulate(S,I,E) ▷ emulate and collect features from S

12 if S is branch statement then

13 BO ← Get_Target(S) ▷ obtain original jump target block

14 if S ∈ F and BT has not been covered and BO cannot reach BT then

15 BN ← Branch_Alter(MR) ▷ find another target block that can reach BT
16 if BN is a valid block then

17 BO ← BN ▷ decide to change the branch

18 S ← first statement of BO ▷ branch to new block

19 continue

20 else if S is termination then

21 break

22 else

23 S ← next statement

Example 4.4. For the assembly code in Figure 1(c), the binary lifter of ARCTURUS will iden-
tify edi and esi as the two parameters. During initialization, ARCTURUS generates two random
values and assigns them to the two parameters, respectively.

ARCTURUS calculates the code reachability relations between basic blocks for the function
F with a backward graph reachability algorithm [46] (Line 2). To emulate F , ARCTURUS sorts
all intra-procedural basic blocks using the reverse topological order and puts them into a queue
Q (Line 3). According to the reverse topological sort of the CFG, each time, it sets an un-
covered block BT as the target (Line 7), which should be covered in the following emulation.
By covering all basic blocks in a bottom-up fashion, it achieves complete code coverage more
quickly.

Example 4.5. In Figure 1(d), the set of reachable blocks for B′6 is {B′6,B
′
1,B
′
3,4,B

′
0}. After the CFG

sorting, Q = {B′6,B
′
5,B
′
2,B
′
1,B
′
3,4,B

′
0}.

Before the emulation starts, it initializes the execution environment (Line 8) by filling the global
and local memory regions with declared variables.

Emulation. Then, the emulation starts from the entry point of the function F , which is its
first statement. The emulation engine emulates the current statement S with the input I and
environment E . During emulation, runtime behaviors are collected into F ’s semantic feature set

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:12 A. Zhou et al.

SF , and the E is also updated to handle the following statements (Line 11): To collect semantic
features described in Section 4.2, ARCTURUS monitors all program operations, such as memory
read/write and function calls. If they satisfy the semantic feature description, then we put related
values into the set SF .

Example 4.6. For the binary code in Figure 1(c), ARCTURUS emulates it from the first instruction.
For instruction 4, ARCTURUS emulates it by allocating a heap memory region with size 0x20 and
assigning the address to rax. Then, ARCTURUS moves the program counter to the next instruction
5, which stores the value of rax to the stack memory [rbp+heap]. Moreover, ARCTURUS records
the name of malloc function and the allocated address as the semantic features.

Line 12–Line 19 illustrates the core steps that allow ARCTURUS to achieve full code coverage
and high accuracy at the same time. For the target block BT , the algorithm aims to alter the ex-
ecution path to cover BT by monitoring branch statements. More specifically, if statement S is
a branch statement inside target function F and BT has not been covered yet, then ARCTURUS
checks whether BT is reachable from the default branch outcome BO by querying the reachability
mapMR (Line 14). If BO can reach BT , then no modification is performed, and the execution con-
tinues because it has the potential to cover BT next. Otherwise, ARCTURUS tries to find another
branch that can reach BT (Line 15).

Example 4.7. For the binary code in Figure 1(d), suppose the two input parameters (edi and
esi) take 0x5 and 0x10, respectively. ARCTURUS first sets the target block BT as B′6 and executes
the function from instruction 1. For the branch statement at instruction 9, since esi < 0x12, the
default branch outcome goes to B′2, which is unreachable to B′6. ARCTURUS modifies the branch
outcome to be B′6 because it is reachable to B′6.

Since the target BT must be reachable from the function entry point, each executed jump in-
struction must have at least one successor that can reach BT following the algorithm. If s is a
conditional jump, then BT must be reachable from one of its successors, so ARCTURUS simply
assigns the other successor of S as the following block to be emulated. The switch statement pro-
poses additional challenges to ARCTURUS since it usually has more than two successor branches.
As a result, when the natively executed branches in the switch statement cannot reach the tar-
get block, we have to choose from multiple branches to decide which one to take. ARCTURUS
currently chooses the last entry in its jump table that can reach the target block as the alternative
branch. We argue that such a design is reliable even considering complicated transformations (e.g.,
nested if-else at -O0 and jump table at -O3). To facilitate the indexing, entries of a switch jump table
are arranged in a sequential order in binaries. Therefore, for binaries without special obfuscations,
the entry order in a jump table is sequential, even with heavy compiler optimization. Consider a
switch statement in source code; there are three possible situations to consider when it is compiled
into binaries under different configurations.

— The first situation is that the switch-case or the nested if-else are all compiled into nested
branches. Then, no branch has more than two successors. Therefore, ARCTURUS works
correctly following the proof in Section 5.

— The second situation is that the switch cases or the nested if-else are all compiled to jump
tables. The jump tables in binaries must have been ordered according to the values of cases
or conditions. Therefore, ARCTURUS’s current strategy also works correctly.

— The third situation is that one of the switch cases or the nested if-else is optimized to the
jump table while the other one is optimized to nested branches. In most cases, ARCTURUS’s
re-optimization step can unify different formats and thus fall back to the first two situations.
In rare cases where re-optimization cannot unify the formats, we found that the nested if-else

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:13

is still ordered as jump tables. By examining the if-else branches one-by-one, our algorithm
will choose the last branch that can reach the target point, which equals finding the last
entry in its jump table that can reach the target.

After finding a valid target BN , it overrides the control-flow by force, changing the jump target
from BO to BN (Line 17). The emulation terminates when all intra-procedural blocks are covered,
and the feature set SF will be used to calculate the similarity score between two functions.

5 FORMAL ANALYSIS OF CORRECTNESS

In this section, we prove that the reachability-guided emulation guarantees the same execution
results for two semantically equivalent functions, which is an ideal scenario of semantically similar
functions (functions compiled from the same source code). In real cases, we usually have to handle
functions that are not totally semantically equivalent. So, the extracted features are not exactly
the same but have some similarities. At a high-level, our proof shows that every time a branch
outcome is changed, the execution paths for two semantically equivalent program points still have
consistent runtime behaviors among semantically equivalent binaries.

5.1 Preliminaries

We first provide basic definitions and assumptions that we use throughout the proof. To present
the proof clearly, we introduce the following notations and terminologies:

— F1 and F2 are two binary functions that are compiled from the same source code (semantically
equivalent), denoted as F1 ≡ F2.

— p1 andp2 are two program points inside F1 and F2 that correspond to the same program point
in the original source code, which are semantically equivalent (aligned), denoted as p1 ≡ p2.

— ei = (vi ,vj) denotes a directed edge in the CFG that goes from vi to vj .
—P = ⟨v0,v1, . . . ,vn⟩ is a program path in the CFG, where vk is a CFG node.
— ei = (vi ,vj) ∈ P means a program path goes through a CFG edge ei .
— p ∈ P means a path P goes through a program point p.
—PF1 andPF2 are two paths that are obtained from natively executing F1 and F2 with the same

program inputs.

Definition 5.1 (Reachability Set). For a given CFG node N , its reachable setRN and unreachable
set UN are defined as follows:

RN = {v ∣ v � N}
UN = {v ∣ v ̸ N},

where all nodes inRN and UN are intra-procedural nodes, and the two sets are disjointed.
Additionally, a given program point p inside N has the same reachable set and unreachable

set as N , denoted asRp and Up .

Example 5.1. In Figure 4, for the CFG nodeT , the correspondingRT and UT are {A,B,D,T} and
{C,E, F ,G,H , I , J ,K}, respectively.

Definition 5.2 (Border Edge). For a given program point p, we define Border Edge in regards to
p as E

p

b
= {(vi ,vj) ∣ (vi ∈ Rp ∧vi ≠ p ∧vj ∈ Up)}

Border edges connect nodes in different reachability sets of the block p belongs to.

Example 5.2. In Figure 4, E1 = (A,C) ∈ ET
b , while E2 = (A,B) ∉ ET

b .

We now formally prove that border edges can only start from Rp and end at Up , but not vice
versa.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:14 A. Zhou et al.

Fig. 4. RT and UT of the target block T .

Lemma 5.1. For a given program point p.

∀(vi ,vj) ∈ E
p

b
⇒ vi ∈ Rp ∧vj ∈ Up

Proof. We prove it by contradiction. Suppose there exists an edge (vi ,vj) such thatvi ∈ Up and
vj ∈ Rp . Since vj ∈ Rp , vj � p. Suppose the path starts from vj that reaches p is P1 = ⟨vj , . . . ,p⟩,
then the path P2 = ⟨vi ,vj , . . . ,p⟩ starts from vi and reaches p. Therefore, vi � p, and vi ∉ Up , a
contradiction. �

This lemma implies there does not exist a path that starts from a block inside Up and goes
through a block insideRp . Therefore, if any path goes through any border edge, then it must not
go through p.

Example 5.3. In Figure 4, if a path goes through E1, then it would never go through T .

Now, we state the key assumption that guides and motivates our approach. We observe that this
assumption holds for most binaries, in general (see the study in Section 3.2).

Assumption 5.1. The CFG nodes insideRp1 andRp2 have the same semantics given that p1 ≡ p2.

This assumption means that two execution paths inside Rp1 and Rp2 should have the same
runtime behaviors given that they are executed from the aligned program points (e.g., function
entry) with the same initial state (e.g., same initial variable definitions and memory states). We
can also conclude that Up1 and Up2 have the same semantics, since F1 ≡ F2.

5.2 Proof

We establish the following lemmas to prove the correctness of our approach:

Lemma 5.2. For a given program point p and a program path P that terminates without aborting.

∀ei ∈ P,ei ∉ E
p

b
⇒ p ∈ P

Proof. Let the entry node be v0, it is evident that v0 ∈ Rp , since the entry node can reach all
intra-procedural nodes.

We prove it by contradiction. Suppose a path P = ⟨v0,v1, . . . ,vk ⟩ that does not go through any
border edges and does not contain p. Since P does not go through any border edges, all nodes of
P must belong toRp , thus vk ∈ Rp .

Sincevk is an exit node, it does not have any children and there does not exist a path that starts
from vk and goes through p. Therefore, vk ̸ p and vk ∉ Rp , a contradiction. �

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:15

In other words, if a path does not go through any border edges, then it must go through p.

Example 5.4. In Figure 4, the only path that does not go through border edges is ⟨A,B,D,T ⟩,
which goes through T .

Lemma 5.3. ∃e1 ∈ PF1 ,e1 ∈ E
p1

b
⇒ ∃e2 ∈ PF2 ,e2 ∈ E

p2

b
.

Proof. We prove it by contradiction.PF1 andPF2 have the same semantics, as they are executed
from the function entry nodes under the same inputs. SupposePF1 does not go through any border
edge of p1, while PF2 goes through a border edge of p2. According to Lemmas 5.1 and 5.2, PF1 goes
through p1, while PF2 does not go through p2. As a result, PF1 contains the semantics in p1, while
PF2 does not contain the semantics in p2. They have different semantics, a contradiction. �

In other words, given the same inputs, if one of the natively executed paths in F1 and F2 (F1 ≡ F2)
goes through a border edge, then the other one must also go through a border edge. Intuitively, the
path that goes through the border edge contains the semantics in the unreachable set. In contrast,
the path’s runtime behaviors that do not go through the border edge only reflect the semantics
inside the reachable set. Therefore, as long as two paths have the same semantics, all of them or
none of them should go through border edges with respect to p1 and p2.

Lemma 5.4. If PF1 and PF2 go through border edges, then the two program points before the border

edges can be aligned and have the same program state.

Proof. According to Assumption 5.1, for two semantically equivalent program points p1 and p2,
execution paths of PF1 and PF2 inside Rp1 and Rp2 have the same final state. Therefore, the two
program points before the two paths going through border edges have the same program state and
can be aligned. �

Based on the above lemmas, we can now prove two theorems of our approach.

Theorem 5.1. Algorithm 1 produces the same execution results for two paths that cover p1 and

p2 (p1 ≡ p2).

Proof. There are two cases to consider.

— If both p1 and p2 can be covered with native execution, then the two paths must have the
same behaviors.

— If natively executing F1 goes through a border edge (vi ,vj). According to Lemma 5.3, the
natively executed path of F2 must go through a border edge (denoted as (vp ,vq)). According
to Lemma 5.4, two program points before going through (vi ,vj) and (vp ,vq) can be aligned
and have the same program state. Our technique changes the branch outcomes in vi and vp

to blocks inside the reachable sets.
– If Both vi and vp have only one successor insideRp1 andRp2 , then modifying the branch

outcomes in vi and vp can be viewed as natively executing from the same program
point (ends ofvi andvp ) with the same program state. Therefore, the later execution paths
are also equivalent.

– Optimized switch statements could make one or both ofvi andvp have more than one suc-
cessor insideRp1 andRp2 . Since entries of a switch jump table are arranged in a sequential
order in binaries, choosing the last entry still ensures consistent execution paths (more dis-
cussions about switch are presented in Section 4.4).

We have shown that, whenever the execution paths go through the border edges, our technique
can still ensure aligned program points having the same program states. Therefore, the execution
results of the two paths must be the same. �

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:16 A. Zhou et al.

Theorem 5.2. Algorithm 1 produces the same execution results for two semantically equivalent

functions F1 and F2.

Proof. According to Theorem 5.1, Algorithm 1 guarantees the same execution results for two
aligned program points. Since it covers all program points in F1 and F2, all aligned program points
in F1 and F2 are covered with consistent execution paths and produce the same runtime behaviors.
Therefore, our technique guarantees the same execution results for two semantically equivalent
functions. �

6 IMPLEMENTATION AND EXPERIMENT SETUP

6.1 Implementation

We have implemented ARCTURUS on our binary translation framework, which consists of over
160k lines of C/C++ code. We use CAPSTONE [16] as the underlying disassembler to translate raw
binary bytes into assembly and lift the assembly code into LLVM IR. Our similarity comparison,
including the emulator, is written with over 8,000 lines of C/C++ code. The emulation engine is
implemented on top of the LLVM instruction interpreter. Currently, ARCTURUS supports binaries
on the x64 platform. It can be easily extended to support other architectures due to the cross-
platform feature of LLVM IR.

6.2 Experiment Setup

We evaluate ARCTURUS on an Intel Xeon(R) computer with an E5-1620 v3 CPU and 64 GB of
memory running Ubuntu 16.04 LTS.

Dataset Collection. The dataset used in the experiment consists of 16 programs (details in Ta-
ble 2 ) that are: (i) widely used in evaluating previous work (e.g., Coreutils [79, 92]), (ii) adopted
by publicly available datasets like BINKIT [49] (e.g., OpenSSL), and (iii) common in real-world sce-
narios (e.g., vim). Besides, the 16 programs adopted in the evaluation also have sufficient diversity
in terms of the source code size (ranging from 63 KLOC to 4,547 KLOC) and the functionality (e.g.,
image processing and authentication) to show both the effectiveness and scalability of ARCTURUS.

For benign code analysis, the projects are compiled with different optimization levels (O0-O3),
using two modern compilers of different versions, i.e., GCC v7.5.0/4.8.1 and Clang v8.0.0/3.6.2.
Moreover, we adopt BinTuner [66] to maximize the binary code syntactic differences (denoted as
-OB), showing the effectiveness of ARCTURUS. BinTuner leverages a guided stochastic algorithm
to explore how combinations of compiler optimization passes can obfuscate software. Since its
prototype [4] fails to process all the projects, we only use it to search for optimization option
sequences for Coreutils and OpenSSL compiled with GCC, which is in accordance with their
paper.

Additionally, for obfuscated code analysis, we use the three strategies provided by OLLVM [7]
to handle the projects with the optimization option -O3: (i) Bogus Control Flow (BCF), break-
ing original basic blocks up by inserting opaque predicates; (ii) Control Flow Flattening (FLA),
splitting a function control flow graph into parts and putting them inside an infinite loop with a
switch structure to maintain the original control flow; and (iii) Instruction Substitution (SUB),
replacing the original instruction with functionality equivalent but more complicated ones. Since
OLLVM is unable to handle all projects, only seven of them are successfully obfuscated for the
experiments.

In total, we compiled 286 binaries (Coreutils is compiled into a single binary file) with 820,021
functions for evaluation.

Ground Truth and Metrics. The debug and symbol information of all the aforementioned
binaries is stripped for evaluation. To verify the correctness of the experiment results, we compile

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:17

their extra unstripped copies and leverage the symbol names of functions as the ground truth. Two
functions are considered to be correctly matched if they have the same symbol name [49, 92].

Similar to previous research [17, 26, 28, 29, 80], we adopt Precision@K to measure the correctness
of function matching between two binaries, i.e., the percentage of target functions whose correct
matches are found within the Top K entries in the resulting function list:

Precision@K =
∣{b ∈ B ∣ nb ∈ NK

L }∣
∣B∣

, (2)

where B is the target function set, nb is the symbol name of the function b, and NK
L is the symbol-

name set of entries whose similarity scores are ranked within Top K of the resulting function list
L (L has been sorted by the similarity scores in descending order).

For example, consider the target binary bin1 and the reference binary bin2 that are compiled
from the same source code but with different compilation configurations. For a function f in bin1,
we iteratively compare it with all functions in bin2 and produce the resulting function list L by
sorting all the scores. If the symbol name of f is the same as the first function in L, then we
will regard them as a Top-1 matching pair. Therefore, the Precision@1 of bin1 vs. bin2 is calcu-
lated as the number of Top-1 matching functions in bin1 divided by ∣B∣ (the number of functions
inside bin1).

Note that Precision@K counts functions with the same similarity score. For example, if the first
two entries in the resulting function list share the same score, then they are both counted in Preci-

sion@1. Namely, it is considered to be correct when the target function matches either of the entries.
Thus, we further adopt Single Match Rate (RS ) to measure the distinguishability of ARCTURUS. It
is the rate of correct matches in Precision@1, each of which has a single entry for the highest
similarity score:

RS =
∣{b ∈ B ∣ nb ∈ N 1

L ∧ ∣N
1
L ∣ = 1}∣

∣{b ∈ B ∣ nb ∈ N 1
L }∣

,

where N 1
L is the symbol-name set of entries with the highest similarity score.

Baselines. We compare ARCTURUS with eight state-of-the-art baseline techniques that repre-
sent four different kinds of similarity analysis approaches:

— BinDiff [3] and ISRD [86]. These two methods are state-of-the-art syntax-based solutions
that measure similarity based on program CFGs or instruction sequences.

— IMF-Sim [80] and CACompare [40]. These two methods measure the similarity of two
functions by directly executing them with identical inputs and comparing outputs.

— BinGo [17] and BLEX [28]. These two methods are state-of-the-art dynamic similarity anal-
ysis techniques that achieve complete code coverage by overriding the intended program
logic. Since BLEX is publicly unavailable, we re-implement it based on the same LLVM IR
used by ARCTURUS to perform a fair comparison.

— jTrans [79], Asm2Vec [26], and SAFE [58]. These three methods are state-of-the-art deep
learning-based solutions for similarity analysis. We implement SAFE [8] and jTrans [9] based
on their official PyTorch code. We directly use the analysis platform provided by Asm2Vec [6].
We use their default parameter settings in the evaluation.

For baseline approaches that are publicly available (BinDiff, jTrans, Asm2Vec, SAFE) or are
re-implemented (BLEX) by us, we use them to analyze all binaries in our benchmark and com-
pare the results. Since unavailable baselines (ISRD, IMF-Sim,1 CACompare, BinGo) have the same

1IMF-Sim has a Github version, but we are not sure about its validity, so we say that IMF-Sim is closed-source.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:18 A. Zhou et al.

Table 3. Precision@1 Results of Cross-compilation-setting Analysis

Project
G3

7 G3
4 C3

8 C3
3 GB

7

G0
7 G0

4 C0
8 C0

3 G0
7 G0

4 C0
8 C0

3 G0
7 G0

4 C0
8 C0

3 G0
7 G0

4 C0
8 C0

3 G0
7

ImageMagick .870 .868 .871 .869 .894 .897 .890 .891 .925 .924 .937 .936 .946 .943 .956 .956 -

binutils .869 .870 .859 .861 .876 .883 .854 .854 .903 .907 .917 .915 .913 .917 .926 .928 -

busybox .885 .885 .882 .882 .891 .886 .894 .893 .899 .897 .901 .900 .903 .899 .907 .906 -

coreutils .868 .868 .855 .850 .874 .880 .869 .861 .882 .893 .885 .877 .912 .919 .907 .900 .831

diffutils .861 .868 .854 .847 .831 .834 .831 .828 .891 .895 .877 .873 .931 .935 .913 .913 -

gpac .835 .835 .832 .831 .846 .846 .840 .839 .879 .884 .871 .873 .883 .883 .878 .880 -

htslib .920 .919 .910 .910 .913 .916 .909 .908 .936 .939 .941 .942 .944 .949 .951 .951 -

libarchive .863 .870 .869 .872 .890 .902 .882 .885 .899 .909 .896 .895 .914 .925 .918 .920 -

libxml2 .815 .813 .806 .809 .804 .800 .792 .795 .852 .851 .863 .866 .880 .878 .889 .890 -

nginx .892 .887 .878 .877 .891 .889 .875 .872 .883 .882 .894 .896 .906 .903 .927 .924 -

openssl .849 .853 .854 .855 .879 .894 .892 .891 .881 .893 .894 .894 .912 .926 .927 .926 .820

putty .854 .853 .845 .846 .871 .872 .855 .850 .878 .879 .870 .865 .893 .892 .878 .888 -

sqlite .834 .833 .817 .817 .806 .811 .793 .794 .868 .882 .875 .873 .886 .901 .886 .886 -

tcpdump .804 .797 .794 .792 .841 .835 .821 .816 .881 .885 .882 .883 .887 .888 .905 .902 -

transmission .892 .891 .888 .887 .884 .889 .879 .879 .917 .917 .923 .921 .924 .926 .928 .928 -

vim .766 .764 .774 .774 .802 .802 .800 .798 .844 .846 .848 .846 .871 .874 .872 .870 -

Average .855 .855 .849 .849 .862 .865 .855 .853 .889 .893 .892 .891 .907 .910 .910 .910 .826

Ln
V

represents the compilation configuration, meaning that binaries are generated with the compiler L of the version

V with optimization option -On. -OB is the optimization organized by BinTuner [66]. G7, G4 is short for GCC v7.5.0,

GCC v4.8.1, and C8, C3 means Clang v8.0.0, Clang v3.6.2.

projects (e.g., Coreutils) in the benchmark as ARCTURUS’s and use the same metric to measure
the correctness (Equitation 2), we directly refer to the corresponding results in their papers for
comparison.

7 EVALUATION

In this section, we design a group of experiments to evaluate the effectiveness and capability of
ARCTURUS by investigating the following research questions:

— RQ1: How accurate and efficient is ARCTURUS in matching similar binary functions across
code transformations?

— RQ2: How does ARCTURUS compare to the state-of-the-art?
— RQ3: How effective is ARCTURUS in distinguishing similar functions?
— RQ4: How effective is ARCTURUS in real-world applications?

7.1 RQ1: Accuracy and Efficiency

In this section, we evaluate the accuracy and efficiency of ARCTURUS in matching similar binary
functions across code transformations.

7.1.1 Accuracy. Table 3 lists the Precision@1 results of -O3 vs. -O0 binaries, and -OB vs. -O0
binaries, which are shown to be the most challenging similarity analysis tasks [66, 79]. Bin-
Tuner [66] aims at achieving a higher optimization level than the regular -O3 level, so we regard it
as a special case of -O3 optimized code and only compare it with -O0 optimized binaries. Complete
Precision@K results are presented in Table 4. ARCTURUS achieves an average Precision@1 of
87.8% for comparison between -O0 and -O3 binaries. The average Precision@1, Precision@3, and
Precision@5 for all compilation settings are 89.6%, 93.9%, and 95.1%, respectively. It even bridges
the syntax and structure gaps created by BinTuner, and the results are comparable to those of
conventional settings. Taking Coreutils as an example, the Precision@1 of BinTuner vs. -O0 is
83.1%, while that of -O3 vs. -O0 is 86.8%. Additionally, ARCTURUS achieves 100% code coverage

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:19

Table 4. Complete Results of Cross-compilation-setting Analysis

ImageMagick binutils busybox coreutils diffutils gpac htslib libarchive libxml2 nginx openssl putty sqlite tcpdump transmission vim

@1 .870 .869 .885 .868 .861 .835 .920 .863 .815 .892 .849 .854 .834 .804 .892 .766

@3 .906 .922 .932 .921 .915 .903 .969 .923 .889 .941 .905 .920 .894 .891 .943 .838G0
7

@5 .918 .938 .947 .934 .932 .918 .978 .943 .913 .955 .919 .944 .915 .919 .953 .854

@1 .868 .870 .885 .868 .868 .835 .919 .870 .813 .887 .853 .853 .833 .797 .891 .764

@3 .906 .921 .930 .922 .915 .903 .972 .924 .891 .942 .903 .917 .894 .882 .941 .836G0
4

@5 .918 .935 .943 .935 .940 .917 .981 .947 .914 .955 .918 .941 .911 .911 .952 .852

@1 .871 .859 .882 .855 .854 .832 .910 .869 .806 .878 .854 .845 .817 .794 .888 .774

@3 .911 .915 .932 .920 .922 .902 .972 .928 .878 .927 .909 .917 .876 .880 .942 .847C0
8

@5 .923 .933 .944 .934 .936 .916 .983 .951 .901 .937 .924 .938 .894 .906 .952 .862

@1 .869 .861 .882 .850 .847 .831 .910 .872 .809 .877 .855 .846 .817 .792 .887 .774

@3 .910 .916 .931 .917 .918 .901 .971 .928 .878 .926 .908 .909 .876 .883 .942 .846C0
3

@5 .923 .935 .944 .932 .932 .917 .983 .951 .903 .933 .924 .925 .896 .905 .952 .861

@1 .917 .906 .937 .868 .907 .915 .960 .911 .851 .954 .893 .903 .922 .917 .941 .848

@3 .936 .937 .963 .907 .961 .942 .990 .951 .913 .973 .935 .946 .947 .949 .975 .886G2
7

@5 .946 .941 .971 .914 .961 .950 .991 .960 .922 .978 .943 .956 .958 .957 .983 .894

@1 .895 .887 .922 .903 .877 .894 .949 .882 .833 .937 .874 .884 .905 .893 .923 .799

@3 .922 .921 .955 .948 .942 .934 .984 .933 .895 .965 .925 .934 .938 .932 .962 .862G2
4

@5 .931 .932 .964 .955 .957 .944 .988 .948 .906 .970 .936 .946 .950 .942 .971 .877

@1 .893 .902 .913 .911 .872 .869 .926 .918 .821 .905 .883 .882 .862 .880 .942 .813

@3 .921 .942 .951 .954 .936 .921 .980 .965 .904 .945 .923 .948 .918 .924 .973 .871C2
8

@5 .932 .955 .960 .965 .955 .932 .986 .974 .927 .956 .935 .966 .937 .949 .978 .890

@1 .883 .894 .912 .913 .896 .881 .923 .914 .823 .902 .880 .885 .859 .884 .943 .812

@3 .918 .942 .949 .958 .966 .923 .973 .955 .906 .949 .917 .946 .918 .917 .973 .866

G3
7

C2
3

@5 .929 .950 .963 .970 .981 .935 .978 .967 .921 .957 .931 .959 .934 .932 .976 .886

@1 .894 .876 .891 .874 .831 .846 .913 .890 .804 .891 .879 .871 .806 .841 .884 .802

@3 .929 .922 .937 .929 .905 .901 .957 .941 .889 .957 .925 .929 .876 .908 .939 .856G0
7

@5 .938 .933 .952 .939 .926 .915 .967 .959 .910 .962 .942 .947 .896 .926 .951 .869

@1 .897 .883 .886 .880 .834 .846 .916 .902 .800 .889 .894 .872 .811 .835 .889 .802

@3 .928 .925 .933 .930 .912 .901 .960 .948 .890 .957 .938 .931 .877 .899 .941 .853G0
4

@5 .939 .936 .948 .939 .932 .916 .969 .963 .909 .963 .954 .951 .897 .920 .951 .867

@1 .890 .854 .894 .869 .831 .840 .909 .882 .792 .875 .892 .855 .793 .821 .879 .800

@3 .922 .918 .938 .926 .912 .901 .957 .941 .872 .939 .934 .926 .858 .885 .938 .854C0
8

@5 .932 .933 .946 .936 .932 .913 .968 .958 .899 .952 .947 .943 .890 .909 .950 .868

@1 .891 .854 .893 .861 .828 .839 .908 .885 .795 .872 .891 .850 .794 .816 .879 .798

@3 .923 .918 .939 .916 .909 .900 .957 .941 .875 .940 .933 .917 .858 .883 .938 .851C0
3

@5 .933 .935 .948 .930 .929 .913 .968 .958 .900 .950 .947 .933 .892 .909 .950 .866

@1 .919 .879 .924 .857 .878 .897 .943 .894 .823 .945 .892 .899 .852 .891 .929 .828

@3 .940 .919 .958 .905 .932 .929 .976 .946 .896 .975 .936 .936 .917 .937 .964 .876G2
7

@5 .947 .930 .965 .923 .946 .940 .981 .965 .909 .980 .946 .951 .932 .951 .970 .889

@1 .935 .910 .936 .926 .885 .921 .964 .923 .855 .960 .919 .924 .882 .921 .947 .860

@3 .953 .934 .961 .956 .936 .947 .987 .960 .904 .979 .956 .950 .926 .949 .976 .894G2
4

@5 .958 .942 .966 .962 .953 .955 .990 .969 .914 .982 .962 .963 .944 .958 .979 .903

@1 .908 .893 .916 .909 .868 .868 .925 .914 .832 .900 .900 .889 .844 .859 .918 .829

@3 .935 .943 .951 .952 .952 .916 .972 .963 .919 .940 .937 .938 .902 .904 .957 .871C2
8

@5 .945 .952 .959 .960 .963 .934 .978 .979 .934 .954 .950 .953 .925 .918 .964 .882

@1 .902 .912 .926 .913 .887 .878 .929 .926 .834 .908 .905 .901 .851 .894 .925 .831

@3 .932 .942 .966 .954 .949 .922 .970 .964 .917 .949 .940 .949 .911 .926 .965 .874

G3
4

C2
3

@5 .943 .954 .971 .965 .960 .935 .977 .977 .934 .957 .952 .959 .927 .940 .973 .886

@1 .925 .903 .899 .882 .891 .879 .936 .899 .852 .883 .881 .878 .868 .881 .917 .844

@3 .948 .952 .943 .939 .953 .928 .968 .944 .917 .939 .927 .925 .929 .923 .947 .900G0
7

@5 .962 .964 .954 .955 .978 .944 .976 .961 .936 .951 .936 .945 .949 .934 .958 .912

@1 .924 .907 .897 .893 .895 .884 .939 .909 .851 .882 .893 .879 .882 .885 .917 .846

@3 .947 .955 .940 .939 .957 .928 .974 .951 .924 .940 .934 .930 .935 .924 .944 .896G0
4

@5 .961 .969 .951 .953 .982 .942 .981 .962 .939 .955 .945 .948 .948 .936 .955 .910

@1 .937 .917 .901 .885 .877 .871 .941 .896 .863 .894 .894 .870 .875 .882 .923 .848

@3 .960 .951 .943 .940 .953 .924 .981 .940 .933 .945 .935 .927 .930 .923 .955 .897C0
8

@5 .972 .966 .954 .955 .967 .938 .985 .953 .952 .956 .946 .948 .938 .933 .963 .913

@1 .936 .915 .900 .877 .873 .873 .942 .895 .866 .896 .894 .865 .873 .883 .921 .846

@3 .960 .950 .941 .936 .953 .925 .981 .941 .934 .943 .934 .920 .931 .924 .957 .896C0
3

@5 .972 .965 .954 .950 .967 .939 .985 .953 .954 .956 .945 .938 .939 .934 .965 .914

@1 .929 .905 .916 .858 .893 .893 .936 .927 .873 .915 .905 .895 .886 .947 .943 .868

@3 .960 .951 .951 .918 .963 .933 .976 .957 .934 .961 .943 .943 .951 .967 .968 .917G2
7

@5 .976 .962 .961 .932 .974 .945 .981 .963 .945 .969 .949 .952 .965 .975 .975 .930

@1 .923 .908 .912 .914 .892 .900 .930 .917 .852 .912 .908 .877 .877 .918 .938 .858

@3 .953 .950 .943 .955 .959 .942 .972 .956 .924 .956 .946 .939 .937 .946 .962 .903G2
4

@5 .964 .955 .954 .966 .978 .954 .986 .965 .942 .965 .954 .950 .953 .960 .967 .919

@1 .989 .994 .991 .986 1.000 .981 .993 .991 .973 .980 .988 .992 .979 .971 .992 .971

@3 .992 .997 .994 .997 1.000 .990 .998 .998 .988 .986 .993 .997 .988 .978 .998 .979C2
8

@5 .997 .997 .995 .997 1.000 .992 .998 .998 .991 .993 .994 .998 .993 .982 .998 .981

@1 .967 .974 .972 .964 .949 .959 .971 .964 .936 .962 .962 .947 .945 .943 .981 .936

@3 .981 .989 .987 .981 .996 .977 .987 .986 .978 .981 .977 .972 .980 .956 .992 .959

C3
8

C2
3

@5 .988 .990 .988 .983 .996 .982 .988 .990 .985 .990 .980 .977 .988 .965 .995 .963

@1 .946 .913 .903 .912 .931 .883 .944 .914 .880 .906 .912 .893 .886 .887 .924 .871

@3 .964 .957 .945 .958 .953 .943 .973 .953 .929 .957 .948 .928 .940 .921 .957 .922G0
7

@5 .965 .967 .954 .967 .964 .955 .981 .965 .946 .963 .956 .954 .954 .930 .967 .931

@1 .943 .917 .899 .919 .935 .883 .949 .925 .878 .903 .926 .892 .901 .888 .926 .874

@3 .962 .962 .942 .955 .957 .944 .977 .959 .937 .956 .957 .926 .947 .922 .954 .920G0
4

@5 .964 .971 .953 .966 .968 .954 .985 .970 .949 .966 .964 .951 .954 .933 .963 .929

(Continued)

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:20 A. Zhou et al.

Table 4. Continued

ImageMagick binutils busybox coreutils diffutils gpac htslib libarchive libxml2 nginx openssl putty sqlite tcpdump transmission vim

@1 .956 .926 .907 .907 .913 .878 .951 .918 .889 .927 .927 .878 .886 .905 .928 .872

@3 .972 .957 .946 .957 .953 .936 .981 .962 .942 .964 .958 .921 .933 .943 .961 .918C0
8

@5 .973 .967 .955 .966 .964 .949 .987 .973 .959 .969 .965 .945 .940 .948 .968 .931

@1 .956 .928 .906 .900 .913 .880 .951 .920 .890 .924 .926 .888 .886 .902 .928 .870

@3 .972 .957 .945 .955 .949 .939 .983 .962 .942 .962 .957 .933 .933 .939 .962 .917C0
3

@5 .975 .970 .955 .965 .960 .951 .987 .974 .959 .969 .965 .953 .940 .945 .970 .930

@1 .931 .910 .934 .879 .941 .883 .941 .923 .886 .935 .910 .894 .893 .900 .938 .883

@3 .967 .949 .962 .930 .963 .924 .973 .959 .941 .970 .948 .933 .954 .931 .968 .931G2
7

@5 .972 .959 .968 .939 .967 .937 .982 .968 .952 .975 .956 .944 .968 .943 .976 .942

@1 .932 .924 .927 .924 .897 .899 .939 .927 .882 .936 .923 .884 .908 .902 .939 .883

@3 .961 .957 .953 .967 .952 .943 .967 .956 .937 .967 .955 .937 .951 .933 .965 .924G2
4

@5 .965 .961 .960 .976 .974 .955 .982 .964 .952 .970 .963 .952 .964 .947 .971 .938

@1 .983 .983 .973 .970 .953 .951 .976 .974 .968 .968 .963 .938 .968 .928 .982 .973

@3 .992 .993 .986 .983 .993 .967 .987 .986 .989 .982 .982 .966 .984 .945 .993 .984C2
8

@5 .993 .995 .988 .986 .993 .982 .991 .994 .993 .991 .985 .971 .991 .947 .993 .987

@1 .997 .993 .994 .995 1.000 .988 .997 .987 .984 .994 .992 .990 .985 .997 .993 .988

@3 .997 .997 .997 .996 1.000 .993 .999 .993 .994 .997 .996 .997 .994 1.000 .999 .992

C3
3

C2
3

@5 .997 .998 .997 .996 1.000 .994 .999 .995 .996 .997 .996 .997 .995 1.000 .999 .993

@1 - - - .831 - - - - - - .820 - - - - -

@3 - - - .881 - - - - - - .860 - - - - -GB
7 G0

7

@5 - - - .935 - - - - - - .908 - - - - -

Ln
V

represents the compilation configuration, meaning that binaries are generated with the compiler L of the version

V with optimization option -On. -OB is the optimization organized by BinTuner [66]. G7, G4 is short for GCC v7.5.0,

GCC v4.8.1, and C8, C3 means Clang v8.0.0, Clang v3.6.2. @K means Precision@K.

Table 5. Precision@1 Results of Matching Functions

Obfuscated by OLLVM

Project
OLLVM -O3 vs. GCC/Clang -O0
BCF FLA SUB ALL

coreutils .860 .799 .887 .705

diffutils .875 .749 .890 .667

htslib .938 .781 .947 .674

libarchive .891 .769 .902 .683

nginx .838 .709 .890 .630

openssl .791 .632 .898 .608

transmission .885 .727 .921 .666

Average .868 .738 .905 .662

(BCF: Bogus Control Flow, FLA: Control Flow Flattening, SUB:

Instructions Substitution, ALL: BCF + FLA + SUB)

in all projects, which demonstrates that ARCTURUS is able to achieve high accuracy and full code
coverage simultaneously due to its awareness of execution context consistency.

The results of ARCTURUS to match obfuscated functions with benign ones are presented in
Table 5. ARCTURUS does well in handling functions obfuscated by BCF and SUB. The average
Precision@1 is 86.8% and 90.5% separately.

7.1.2 False Case Analysis. We have manually inspected the comparison results to find the root
cause of the incorrect matching. After inspecting, we find that the main reason leading to the
false cases is the function inlining and splitting. Modern compilers tend to inline or split user-
defined/library functions to enable further optimizations. These two optimizations break the func-
tion boundaries and re-arrange the semantics contained by each function. Specifically, inlining
expands a callee into its callers, introducing extra semantics (i.e., those of the callee) to the caller.
By contrast, splitting breaks a function into parts and connects them with inter-procedural calls;
each fragment only contains a subset of the original semantics. As a result, the features collected
by ARCTURUS will change accordingly, and it will miss the match between functions with and

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:21

Fig. 5. Linear fit lines on the emulation time. The

x-axis stands for the number of instructions of func-

tion (times 10,000 scale). The y-axis stands for the

time cost (second) or the emulation.

Table 6. Average Online Time Cost for Each Stage

(in Seconds)

Project
Reachability
Calculation

Emulation
Similarity

Comparison
Total

ImageMagick 95.81 2035.16 55.47 2186.44

binutils 9.94 50.22 8.24 68.40

busybox 7.82 61.76 16.47 86.04

coreutils 4.60 30.65 3.45 38.70

diffutils 0.82 4.04 0.34 5.21

gpac 85.72 1133.37 304.58 1523.68

htslib 3.42 19.88 2.01 25.31

libarchive 3.26 25.50 4.99 33.75

libxml2 8.92 108.78 23.98 141.68

nginx 1.47 17.22 3.05 21.74

openssl 15.26 446.41 86.36 548.03

putty 7.26 88.88 4.51 100.65

sqlite 24.26 185.58 10.23 220.07

tcpdump 4.63 21.52 3.42 29.57

transmission 8.30 30.97 4.54 43.81

vim 55.97 764.90 108.56 929.44

Average
(Percentage)

21.9 314.5 40.01
375.16

(5%) (84%) (11%)

Time/Function 0.01 0.13 0.02 0.15

without inlining/splitting. Completely solving this problem requires inlining all callee functions
into its caller, but this might cause the program to blow up in size exponentially. Selective inlin-
ing [17] could also help alleviate the problem, but it is hard to determine the correct threshold such
that the inlining degrees between different binaries are the same.

We found that another problem is the lack of function features. ARCTURUS will fail to find
correct matches for functions without semantic features, especially those that only perform arith-
metic operations with few I/O behaviors, e.g., encryption functions in OpenSSL. Fortunately, due
to the complete code coverage, ARCTURUS is able to capture rich semantics information, and only
0.43% of the functions are found to have no features in the experiments.

For code obfuscation, FLA becomes the obstacle in the way of ARCTURUS attempting to achieve
high accuracy, and the average Precision@1 is only 73.8%. The main reason is that FLA breaks
an original path into multiple pieces and chains them via infinite loops at runtime. However,
ARCTURUS pursues full block coverage instead of full path coverage, which, unfortunately, is still
an open problem [32]. Thus, the resulting semantics captured are far from complete, accounting
for only a small part of the original paths, which results in incorrect matching.

7.1.3 Efficiency. We evaluate the efficiency of ARCTURUS by measuring the average online
time spent by different steps of the analysis. Table 6 presents the results. Overall, ARCTURUS
spends an average time of 375.16 s on one binary, including code reachability analysis, emulation,
and similarity comparison. ARCTURUS only spends 0.15 s, on average in handling one function,
showing that it is sufficiently efficient for practical use. Reachability analysis only accounts for 5%
of the whole processing time, on average. In contrast, due to the requirement of full code coverage,
emulation costs the majority of the entire time, i.e., 84%. The time spent on similar function search-
ing (e.g., similarity comparison) is also negligible, accounting for only 11% of the total running time.
On average, only 0.02 s is spent on searching for similar functions in the function pool.

We adopt the curve-fitting approach [68] to study the observed average emulation time con-
sumption of one function for each project. Figure 5 shows the fitting curves and their coefficients
of determination R2. R2 ∈ [0, 1] is a statistical measure of how close the data are to the fitting
curve. The closer R2 is to 1, the better the fitting curve is. It shows that ARCTURUS’s emulation

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:22 A. Zhou et al.

Table 7. Average Precision@1 Results and Processing Time of Baselines

ARCTURUS BinDiff ISRD BinGo BLEX BLEX-V CACompare IMF-Sim Asm2Vec jTrans SAFE

∗ coreutils Pcac ∗ coreutils coreutils ∗ Pcac coreutils ∗ ∗ ∗
G3 vs. G0 .859 .873 .875 .137 .624 .331 .591 .614 .768 .704 .333 .571 .253

G3 vs. C0 .852 .859 .872 .121 .644 .326 .573 .584 - .601 .327 .452 .222

C3 vs. C0 .901 .892 .909 .174 .784 .344 .640 .663 - .775 .353 .487 .290

C3 vs. G0 .899 .901 .906 .149 .562 .343 .639 .677 - .660 .344 .581 .285

Average .878 .881 .890 .145 .654 .336 .611 .634 .768 .685 .339 .523 .262

Time/Function 0.15 0.03 0.26 0.01 - - 25.18 5.20 11.37 0.17 0.81 0.36

Cn and Gn mean binaries compiled by GCC (v7.5.0/4.8.1) and Clang (v8.0.0/3.6.2) with optimization option -On,

respectively. BLEX-V means the Variant of BLEX that adopts the same semantics features as ARCTURUS. ∗ means to

take all the projects as the benchmark. Pcac means the shared four projects in our benchmark, which are also adopted

by CACompare. “-” means such data is not available. The processing time of BLEX and BLEX-V refers to the original

implementation based on dynamic instrumentation (25.18 s/function = 57 CPU days / 195,560 functions) [28].

time grows almost linearly with the complexity of the function in practice (R2 > 0.93), thus scaling
up quite gracefully.

7.2 RQ2: Baseline Comparison

In this section, we compare ARCTURUS with the state-of-the-art similarity analysis techniques,
including the syntax-based method of BinDiff [3] and ISRD [86]; the dynamic solutions of
BLEX [28], BinGo [17], IMF-Sim [80], and CACompare [39]; the learning-based approaches
of jTrans [79], Asm2Vec [26], and SAFE [58]. We first compare their performance on matching
benign code across compilation settings, then leverage them to analyze OLLVM-obfuscated code
and compare their results.

7.2.1 Benign Code Analysis. We compare the performance of ARCTURUS with baseline tech-
niques under the most challenging setting, i.e., matching -O0 and -O3 binaries compiled by dif-
ferent compiler versions. For unavailable baselines such as BinGo [17], IMF-Sim [80], and CA-
Compare [40], we show the results of running ARCTURUS on datasets in their papers and directly
compare the results with their reported Precision@1. Additionally, to conduct a fair comparison, we
also re-implement the variant of BLEX [28] to adopt the same semantics features as ARCTURUS,
denoted as BLEX-V.

The results are presented in Table 7. The Precision@1 result of ARCTURUS outperforms all
baseline approaches by 38.4%, on average. ARCTURUS also runs faster than all compared tools,
except BinDiff. Syntax-based solutions such as BinDiff and ISRD have worse performance than
ARCTURUS, because they rely on the CFG structures or instruction sequences to compare bina-
ries, which could be notably altered by heavy compiler optimizations. Dynamic similarity analysis
methods (IMF-Sim and CACompare) that are based on native executions have better Precision@1

than syntax-based solutions, because they both leverage input/output behaviors during the ac-
tual executions, which are more resilient towards code transformations. However, both of them
have worse Precision@1 results than that of ARCTURUS, because they both adopt comparison
information and memory variable offsets as code features, which are not robust enough to code
transformations. Moreover, these two methods suffer from the coverage issue, which limits their
distinguishability (see Section 7.3). Although IMF-Sim leverages advances in fuzzing techniques
to increase the code coverage, it only covers 31.8% of the instructions [80].

Although three existing solutions (i.e., BLEX, BLEX-V, and BinGo) can also achieve high code
coverage as ARCTURUS, they do not perform as well as ARCTURUS in terms of the Precision@1

results (on average, 35.2% worse). The root cause is that they all disregard the context consistency,
i.e., semantically equivalent functions might be executed with different program states, thus result-

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:23

Table 8. Comparison Results with Baselines on Obfuscated Code

ARCTURUS BLEX BLEX-V IMF-Sim Asm2Vec

∗ coreutils ∗ coreutils ∗

OLLVM -O3
vs.

GCC/Clang -O0

BCF .868 .860 .608 .661 .449 .331
FLA .738 .799 .620 .655 .613 .242

SUB .905 .887 .663 .669 .722 .334
ALL .662 .705 .560 .616 - .202

Average .793 .813 .612 .650 .594 .277

(BCF: Bogus Control Flow, FLA: Control Flow Flattening, SUB: Instructions Substitution, ALL: BCF + FLA

+ SUB) BLEX-V means the Variant of BLEX that adopts the same semantics features as ARCTURUS. ∗

means to take all the projects as the benchmark. “-” means such data is not available.

ing in mismatches. BLEX performs not so well as BLEX-V in terms of analysis accuracy, because it
adopts stack variable values as features, which are unstable when faced with code transformations.

Three learning-based methods (i.e., Asm2Vec, jTrans, and SAFE) also perform poorly on our
dataset. All of them infer the representation (i.e., an embedding) of binary code by capturing se-
quences of instructions and CFGs [26, 58, 79], which still heavily depend on both the compiler ver-
sions and optimization levels used. The provided models are usually trained on specific datasets,
which are also generated from given compiler versions. Therefore, these approaches might work
on existing datasets but fail on new or unseen datasets.

7.2.2 Efficiency Comparison. Table 7 also presents the average processing time for one func-
tion. ARCTURUS takes only 0.15 second to process one function, on average, which is much more
efficient than all the other dynamic solutions. Existing dynamic methods such as BLEX and IMF-
Sim are implemented based on Pin, which brings much overhead during execution [77]. On the
contrary, ARCTURUS’s emulation engine is based on the interpreter of the LLVM IR, which avoids
expensive system-level operations and takes much less time to handle one function. BinDiff takes
less time than ARCTURUS because it only performs simple graph-isomorphism checking on func-
tions’ CFGs, leading to very low accuracy. ARCTURUS is even more scalable than all learning-
based methods, such as Asm2Vec, showing that it is practical enough for real-world usage.

7.2.3 Obfuscated Code Analysis. We also compare ARCTURUS with the baselines to match ob-
fuscated binaries. The experimental results are presented in Table 8. Generally, since OLLVM is
based on Clang, all the methods perform worse than analyzing benign code with the configuration
of Clang -O3 vs. GCC/Clang -O0 (Table 7). Despite that, ARCTURUS still outperforms the others
by 26.5%, on average.

7.3 RQ3: Distinguishability

In this section, we study the distinguishability of ARCTURUS and compare its capability with other
solutions. We create an ablation of ARCTURUS, named ARCTURUS-S, which only emulates one
path normally without overriding any branch outcome, similar to existing dynamic-based methods
like IMF-Sim.

Figure 6 shows the results of the cross-compilation-setting analysis (-O0 and -O3). The rea-
sons that lead to incorrect matching of ARCTURUS, including function inlining, have fewer ef-
fects on single-path emulation. Thus, the Precision@1 of ARCTURUS is slightly lower than that of
ARCTURUS-S (87.8% vs. 91.2%). However, the single match rate of the former is much better than
that of the latter (73.5% vs. 57.4%). The above results confirm our arguments about the limitations
of the native execution in Section 3.1. The native execution could hardly distinguish programs that

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:24 A. Zhou et al.

Fig. 6. Results of distinguishability study. ARCTURUS-S only performs native execution.

have similar shallow paths but with different deeply embedded behaviors. Therefore, it could draw
the wrong conclusion that two binary functions are from the same source code and mistakenly
rank many unmatched functions as Top-1, resulting in a high Precision@1 but a low single-match
rate.

Note that the block coverage of ARCTURUS-S is only 25.3%. The results also indicate that the
similar solutions of ARCTURUS-S, which has limited coverage (e.g., CACompare [40] and IMF-
Sim [80]), would suffer from the distinguishability issue as well. Despite the complete block cov-
erage, BLEX still produces a low single match rate, because it executes similar code fragments
of dissimilar functions with the same initial program state, making them indistinguishable from
each other. Compared to ARCTURUS-S, BLEX-V has a much lower Precision@1 but a comparable
single match rate, showing that the distinguishability of similarity analysis is indeed improved by
covering more code to enrich semantics information.

The performance of ARCTURUS in distinguishability highlights its usefulness in practice. For a
target function, if there are multiple entries with the same highest score in the resulting reference
function list, then human analysts will have to examine each entry to find the correct one, which
is tedious and prone to errors.

7.4 RQ4: Applications

In this section, we show the effectiveness of ARCTURUS in real-world scenarios, including known
vulnerability detection and binary version identification.

7.4.1 Known Vulnerability Detection. We choose five different kinds of CVEs in the OpenSSL
project for the evaluation, including the famous Heartbleed (CVE-2014-0160) vulnerability, buffer
overflow (CVE-2014-0195), and so on. We compile seven applications (curl, libmariadb, nginx,
wget, links, git, exim) with the statically linked OpenSSL library using four different compiler
versions (GCC v7.5.0/4.8.1 and Clang v8.0.0/3.6.2) with the projects’ default compilation configu-
rations. For each CVE, we use the vulnerable binary function as the single query target and search
it against all functions inside each application binary. Figure 7 presents the average Precision@1,
single match rate, and Precision@3 of all seven applications. The average Precision@1 and single
match rate are all above 92%, and the Precision@3 even reaches 100%. Moreover, the processing
time of each program is no more than 4 minutes, indicating ARCTURUS’s capability in practical
applications.

7.4.2 Binary Version Identification. Binary version detection is an essential step in knowledge
reuse. With the reference code, ARCTURUS can determine the correct version of unknown bi-

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:25

Fig. 7. Known vulnerability detection results on

OpenSSL.

Fig. 8. Results of binary version identification on

OpenSSL.

nary programs via similarity analysis. Specifically, similar to CoP [56], ARCTURUS measures the
likeness of two binary files with the average highest similarity scores of all matched function
pairs.

We adopt four different versions of OpenSSL in the experiment: v1.1.1a, v1.0.1u, v1.0.1t, and
v1.0.0s. All four versions of the source code are compiled into binaries with GCC and are used as
the reference code. We use ARCTURUS to identify the versions of two Clang-compiled unknown
OpenSSL binaries Bu and Bt , whose real versions are v1.0.1u and v1.0.1t, respectively.

Figure 8 presents the results of comparing the two target binaries with four reference OpenSSL
binaries. For the target binary Bu whose correct version is v1.0.1u, the likeness scores between it
and four reference binaries (v1.1.1a, v1.0.1u, v1.0.1t, and v1.0.0s) are 0.186, 0.780, 0.778, and 0.761,
respectively. ARCTURUS produces a higher similarity score for the correct matched pair (v1.0.1u
vs. v1.0.1u) than all the others. Similarly, ARCTURUS also successfully identifies the correct version
of Bt as v1.0.1t by producing a score of 0.782.

Moreover, we could also infer that there is a larger variance between v1.1.1a and v1.0.1u than
between v1.0.1u and v1.0.0s, which is in accordance with their version numbers. The results also
show that ARCTURUS is capable of giving high confidence for correctly matched pairs while
giving low scores for wrongly matched pairs, which is useful in real-world scenarios where a
concrete threshold needs to be established for dealing with a potentially large number of candidate
functions.

8 DISCUSSION

Limitations and Future Work. Currently, the implementation of ARCTURUS only handles ELF
files on the x64 architecture. Because of LLVM-IR, it could be adapted to other architectures eas-
ily (e.g., ARM, MIPS) and file formats (e.g., PE and Mach-O). Even though obfuscation indeed poses
difficulties for ARCTURUS (Table 5), it still produces much more dependable results than the state-
of-the-art techniques (Table 8). Actually, ARCTURUS is designed for similarity analysis instead
of de-obfuscation. Since de-obfuscation has been well-studied [76, 83, 89, 90], it is recommended
to first de-obfuscate the binary, which has been obfuscated, then apply ARCTURUS for better re-
sults. It is still an open question for binary similarity analysis to detect inlined/split functions. The
heuristic solution of selective inlining [17] cannot be applied to general cases. Since the original
function boundaries are removed, it is difficult to recover them via reverse engineering. In contrast,
re-optimization [20] might be a solution to narrow the gaps caused by such optimizations.
Threats to Validity. ARCTURUS performs reachability-guided emulation on the lifted LLVM-
IR. However, binary disassembling/lifting is still an open problem, and the results might contain

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:26 A. Zhou et al.

errors [12, 18, 62]. Incorrect IR might result in dissimilar semantic features. In addition, the current
lifter cannot cover all the instructions of x64 [51]. Unmodeled instruction sets, e.g., streaming SIMD
extensions, will cause semantic discrepancy. Notwithstanding, it is capable of handling most cases
in practice [11], as indicated by the experimental results.
Solutions to Lack of Function Features. Currently, ARCTURUS adopts I/O values as semantics
features (Section 4.2). For functions lacking such features, a possible solution is to use dependable
structural ones as complements, such as strings [73], argument lists [39], and so on.
Scalability. Emulation is the most time-consuming step of ARCTURUS (Table 6). Fortunately, the
process of each function is independent of each other. Thus, it can be embarrassingly parallelized,
allowing ARCTURUS to be applied to even larger projects in the real world.
Malware Analysis. Currently, ARCTURUS still cannot handle malware with data stream obfus-
cation such as VMProtect [1] and self-modifying code [57]. This is because the main challenge
of handling such cases lies in binary lifting instead of similarity analysis. We leave supporting
malware analysis as one of our future directions.

9 RELATED WORK

Binary Similarity Analysis. Existing binary similarity analysis methods can be categorized as
syntax-based and semantics-based. Syntax-based methods leverage syntactic and structural fea-
tures. BinDiff [3], BinSlayer [14], and discovRE [29] compute the similarity between functions
based on the structure of the control-flow graphs. GitZ [20] and ImOpt [43] find strands equality
through re-optimization. FirmUp [21] leverages game theory to detect common vulnerabilities in
firmware. TRACY [22] BinXray [87], PDiff [45], ISRD [86], and VIVA [82] decompose CFGs into
partial traces and compute the edit distance to measure the similarity. Recently, several methods
leverage advances in deep learning to compare similarities. Genius [31], VulSeeker [34], and Gem-
ini [85] build a graph embedding for the ACFG of a function, i.e., a CFG with nodes annotated with
selected basic block features. αDiff [54] uses a Siamese network with CNN to generate function
embeddings. InnerEye [100], SAFE [58], Asm2Vec [26], DeepBinDiff [27], Trex [63], Codee [92],
Asteria [93], PalmTree [53], and jTrans [79] utilize various deep learning-based embeddings to
capture the information and dependencies of instructions automatically.

Semantics-based methods measure the similarity of binaries by analyzing their functionalities or
runtime behaviors. BinHunt [33, 59], CoP [56], Xmatch [30], Esh [19], BinSim [60], and FIBER [96]
extract symbolic formulas to check semantic equivalence between binaries. MockingBird [39], CA-
Compare [40], BinMatch [41], and IMF-Sim [80] capture the runtime behaviors of binaries via ex-
ecuting the code with predefined inputs. However, they still suffer from low code coverage, which
results in their bad performance in distinguishing between different functions. Multi-MH [65]
and BinGo [17, 88] break the code into smaller fragments and extract semantic information from
sampling basic blocks. The semantic information is extracted from partial traces without local ex-
ecution context, which is usually meaningless and would cause incorrect matching. BLEX [28]
executes the target function repeatedly, starting from so-far uncovered instructions until every
instruction is executed at least once.

Forced Execution. Forced execution is a good choice to extract the semantics of programs
with high code coverage dynamically. Essentially, it trades analysis accuracy for code coverage
by breaking the normal program flows such that the execution can be started at any program
point. Zhang et al. [97] propose locating faults by force-switching conditional branch outcomes.
Limbo [81], Micro-Execution [35], X-Force [64], PMP [94], Johnson et al. [47], and Dual-Force [75]
force-executed the target program to expose its runtime behaviors. FXE [84] and iRiS [25] con-
struct program control-flow graphs from forced execution results. J-Force [50], JSForce [38], and
PMForce [71] apply forced execution to web security.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:27

10 CONCLUSION

We develop a full coverage binary similarity analysis framework that features a novel reachability-
guided emulation technique. It directly covers each code block by dynamically forcing a set of
branch outcomes under the guidance of code reachability relations. The runtime behaviors are used
for similarity comparison. We prove that the executed paths for semantically equivalent binaries
produce the same execution results. The experimental results show that it is substantially more
effective and efficient than the state-of-the-art approaches.

REFERENCES

[1] VMPSofe. 2017. VMPROTECT SOFTWARE. [Online]. Available: http://vmpsoft.com/

[2] GrammaTech. 2019. Binary Software Composition Analysis. [Online]. Available: https://www.verifysoft.com/en_

grammatech_codesentry.html/

[3] Zynamics. 2020. BinDiff. [Online]. Available: https://www.zynamics.com/bindiff/manual/index.html

[4] 2020. BinTuner. Retrieved from https://github.com/BinTuner/Dev

[5] Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. The BSD Conference 5 (2008), 1–20.

[6] 2020. The Kam1n0 Assembly Analysis Platform. Retrieved from https://github.com/McGill-DMaS/Kam1n0-

Community

[7] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. 2015. Obfuscator-LLVM–software protection for

the masses. IEEE/ACM 1st International Workshop on Software Protection, IEEE, 3–9.

[8] 2021. SAFEtorch. Retrieved from https://github.com/facebookresearch/SAFEtorch

[9] 2022. jTrans. Retrieved from https://github.com/vul337/jTrans

[10] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2007. Compilers: Principles, Techniques, & Tools.

Pearson Education India.

[11] Amogh Akshintala, Bhushan Jain, Chia-Che Tsai, Michael Ferdman, and Donald E. Porter. 2019. X86-64 instruction

usage among C/C++ applications. In Proceedings of the 12th ACM International Conference on Systems and Storage.

68–79.

[12] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert Bos. 2016. An in-depth analysis of

disassembly on full-scale x86/x64 binaries. In Proceedings of the 25th USENIX Conference on Security Symposium

(SEC’16). USENIX Association.

[13] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel, and Engin Kirda. 2009. Scalable,

behavior-based malware clustering. In Proceedings of the Annual Network and Distributed System Security Symposium

(NDSS’09). Citeseer, 8–11.

[14] Martial Bourquin, Andy King, and Edward Robbins. 2013. BinSlayer: Accurate comparison of binary executables. In

Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse Engineering Workshop. 1–10.

[15] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng. 2008. Automatic patch-based exploit generation

is possible: Techniques and implications. In Proceedings of the IEEE Symposium on Security and Privacy (SP’08). IEEE.

[16] Nguyen Anh Quynh. 2020. Capstone. The Ultimate Disassembler. [Online]. Available: https://www.capstone-engine.

org/

[17] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho, and Hee Beng Kuan Tan. 2016.

BinGo: Cross-architecture cross-OS binary search. In Proceedings of the 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering (FSE’16). ACM.

[18] Sandeep Dasgupta, Sushant Dinesh, Deepan Venkatesh, Vikram S. Adve, and Christopher W. Fletcher. 2020. Scalable

validation of binary lifters. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design

and Implementation. 655–671.

[19] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical similarity of binaries. In Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI’16). ACM.

[20] Yaniv David, Nimrod Partush, and Eran Yahav. 2017. Similarity of binaries through re-optimization. In Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’17).

[21] Yaniv David, Nimrod Partush, and Eran Yahav. 2018. FirmUp: Precise static detection of common vulnerabilities in

firmware. In Proceedings of the 23rd International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS’18). ACM.

[22] Yaniv David and Eran Yahav. 2014. Tracelet-based code search in executables. In Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI’14). ACM.

[23] Jack W. Davidson and Sanjay Jinturkar. 1995. An Aggressive Approach to Loop Unrolling. Technical Report. Citeseer.

[24] Rocco De Nicola. 2011. Behavioral equivalences. Encyclopedia of Parallel Computing, Springer, 120–127.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.

http://vmpsoft.com/
https://www.verifysoft.com/en_grammatech_codesentry.html/
https://www.zynamics.com/bindiff/manual/index.html
https://github.com/BinTuner/Dev
https://github.com/McGill-DMaS/Kam1n0-Community
https://github.com/facebookresearch/SAFEtorch
https://github.com/vul337/jTrans
https://www.capstone-engine.org/


96:28 A. Zhou et al.

[25] Zhui Deng, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2015. iRiS: Vetting private API abuse in

iOS applications. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.

44–56.

[26] S. H. Ding, B. C. Fung, and P. Charland. 2019. Asm2Vec: Boosting static representation robustness for binary clone

search against code obfuscation and compiler optimization. In Proceedings of the IEEE Symposium on Security and

Privacy (SP’19). IEEE.

[27] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. 2020. DEEPBINDIFF: Learning program-wide code repre-

sentations for binary diffing. In Proceedings of the 27th Annual Network and Distributed System Security Symposium

(NDSS’20).

[28] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket execution: Dynamic similarity test-

ing for program binaries and components. In Proceedings of the 23rd USENIX Security Symposium (SEC’14). USENIX

Association.

[29] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE: Efficient cross-architecture iden-

tification of bugs in binary code. In Proceedings of the Network and Distributed System Security Symposium (NDSS’16).

[30] Qian Feng, Minghua Wang, Mu Zhang, Rundong Zhou, Andrew Henderson, and Heng Yin. 2017. Extracting con-

ditional formulas for cross-platform bug search. In Proceedings of the ACM on Asia Conference on Computer and

Communications Security (AsiaCCS’17). ACM.

[31] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin. 2016. Scalable graph-based bug

search for firmware images. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security

(CCS’16). ACM.

[32] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and Zuoning Chen. 2018. CollAFL: Path

sensitive fuzzing. In Proceedings of the IEEE Symposium on Security and Privacy (SP’18). IEEE, 679–696.

[33] Debin Gao, Michael K. Reiter, and Dawn Song. 2008. BinHunt: Automatically finding semantic differences in bi-

nary programs. In Proceedings of the International Conference on Information and Communications Security. Springer,

238–255.

[34] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker: A semantic learning based vulnerability

seeker for cross-platform binary. In Proceedings of the 33rd IEEE/ACM International Conference on Automated Software

Engineering (ASE’18). IEEE, 896–899.

[35] Patrice Godefroid. 2014. Micro execution. In Proceedings of the 36th International Conference on Software Engineering.

539–549.

[36] David Molnar, P. Godefroid, and M. Y. Levin. 2008. Automated whitebox fuzz testing. NDSS, Vol. 8, 151–166.

[37] Irfan Ul Haq and Juan Caballero. 2021. A survey of binary code similarity. ACM Comput. Surv. 54, 3 (2021), 1–38.

[38] Xunchao Hu, Yao Cheng, Yue Duan, Andrew Henderson, and Heng Yin. 2017. JSForce: A forced execution engine

for malicious JavaScript detection. In Proceedings of the International Conference on Security and Privacy in Commu-

nication Systems. Springer, 704–720.

[39] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2016. Cross-architecture binary semantics understanding

via similar code comparison. In Proceedings of the 23rd International Conference on Software Analysis, Evolution, and

Reengineering (SANER’16). IEEE.

[40] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2017. Binary code clone detection across architectures and

compiling configurations. In Proceedings of the 25th International Conference on Program Comprehension (ICPC’17).

IEEE.

[41] Yikun Hu, Yuanyuan Zhang, Juanru Li, Hui Wang, Bodong Li, and Dawu Gu. 2018. BinMatch: A semantics-based

hybrid approach on binary code clone analysis. In Proceedings of the 34th International Conference on Software Main-

tenance and Evolution (ICSME’18). IEEE.

[42] Jiyong Jang, Maverick Woo, and David Brumley. 2013. Towards automatic software lineage inference. In Proceedings

of the 22nd USENIX Security Symposium (USENIX Security’13). 81–96.

[43] Jianguo Jiang, Gengwang Li, Min Yu, Gang Li, Chao Liu, Zhiqiang Lv, Bin Lv, and Weiqing Huang. 2020. Similarity

of binaries across optimization levels and obfuscation. In Proceedings of the European Symposium on Research in

Computer Security. Springer, 295–315.

[44] Ling Jiang, Hengchen Yuan, Qiyi Tang, Sen Nie, Shi Wu, and Yuqun Zhang. 2023. Third-party library dependency

for large-scale SCA in the C/C++ ecosystem: How far are we? In Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis. 1383–1395.

[45] Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe Wang, Xiaohan Zhang, Xinyu Xing, Min Yang, and Zhemin

Yang. 2020. PDiff: Semantic-based patch presence testing for downstream kernels. In Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security. 1149–1163.

[46] Donald B. Johnson. 1973. A note on Dijkstra’s shortest path algorithm. J. ACM 20, 3 (1973), 385–388.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:29

[47] Ryan Johnson and Angelos Stavrou. 2013. Forced-path execution for android applications on x86 platforms. In Pro-

ceedings of the IEEE 7th International Conference on Software Security and Reliability Companion. IEEE, 188–197.

[48] Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim, Yonghwi Jin, and Taesoo Kim. 2021. Winnie: Fuzzing windows

applications with harness synthesis and fast cloning. In Proceedings of the Network and Distributed System Security

Symposium (NDSS’21).

[49] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim. 2020. Revisiting binary code similarity

analysis using interpretable feature engineering and lessons learned. arXiv preprint arXiv:2011.10749 (2020).

[50] Kyungtae Kim, I. Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng, Xiangyu Zhang, and Dongyan Xu.

2017. J-force: Forced execution on JavaScript. In Proceedings of the 26th International Conference on World Wide Web.

897–906.

[51] Soomin Kim, Markus Faerevaag, Minkyu Jung, SeungIl Jung, DongYeop Oh, JongHyup Lee, and Sang Kil Cha. 2017.

Testing intermediate representations for binary analysis. In Proceedings of the 32nd IEEE/ACM International Confer-

ence on Automated Software Engineering (ASE’17). IEEE Press.

[52] Liyi Li and Elsa L. Gunter. 2020. K-LLVM: A relatively complete semantics of LLVM IR. In Proceedings of the

34th European Conference on Object-Oriented Programming (ECOOP’20). Schloss Dagstuhl-Leibniz-Zentrum für In-

formatik.

[53] Xuezixiang Li, Qu Yu, and Heng Yin. 2021. PalmTree: Learning an assembly language model for instruction embed-

ding. arXiv preprint arXiv:2103.03809 (2021).

[54] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei Zou. 2018. α Diff: Cross-version bi-

nary code similarity detection with DNN. In Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering (ASE’18). ACM, New York, NY.

[55] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser, P. Geoffrey Lowney, Steven Wallace,

Vijay Janapa Reddi, and Kim M. Hazelwood. 2005. Pin: Building customized program analysis tools with dynamic in-

strumentation. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’05). ACM.

[56] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014. Semantics-based obfuscation-resilient bi-

nary code similarity comparison with applications to software plagiarism detection. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering (FSE’14). ACM.

[57] Lorenzo Martignoni, Mihai Christodorescu, and Somesh Jha. 2007. OmniUnpack: Fast, generic, and safe unpacking

of malware. In Proceedings of the 23rd Annual Computer Security Applications Conference (ACSAC’07). IEEE, 431–441.

[58] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto Baldoni, and Leonardo Querzoni. 2019. SAFE:

Self-attentive function embeddings for binary similarity. In Proceedings of the International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment. Springer, 309–329.

[59] Jiang Ming, Meng Pan, and Debin Gao. 2012. iBinHunt: Binary hunting with inter-procedural control flow. In Pro-

ceedings of the International Conference on Information Security and Cryptology. Springer, 92–109.

[60] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-based semantic binary diffing via

system call sliced segment equivalence checking. In Proceedings of the 26th USENIX Security Symposium (SEC’17).

USENIX Association.

[61] Jiang Ming, Dongpeng Xu, and Dinghao Wu. 2015. Memoized semantics-based binary diffing with application to mal-

ware lineage inference. In Proceedings of the IFIP International Information Security and Privacy Conference. Springer,

416–430.

[62] C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao, and J. Xu. 2021. SoK: All you ever wanted to know

about x86/x64 binary disassembly but were afraid to ask. In Proceedings of the IEEE Symposium on Security and

Privacy (SP’21). IEEE Computer Society, 833–851.

[63] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2020. TREX: Learning execution semantics

from micro-traces for binary similarity. arXiv preprint arXiv:2012.08680 (2020).

[64] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong Su. 2014. X-force: Force-executing

binary programs for security applications. In Proceedings of the 23rd USENIX Security Symposium (USENIX Secu-

rity’14). 829–844.

[65] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten Holz. 2015. Cross-architecture bug

search in binary executables. In Proceedings of the IEEE Symposium on Security and Privacy (SP’15). IEEE.

[66] Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. 2021. Unleashing the hidden power of compiler optimization

on binary code difference: An empirical study. In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation. 142–157.

[67] Nathan Rosenblum, Barton P. Miller, and Xiaojin Zhu. 2011. Recovering the toolchain provenance of binary code. In

Proceedings of the International Symposium on Software Testing and Analysis. 100–110.

[68] L. A. Sandra. 1994. PHB Practical Handbook of Curve Fitting. CRC Press, Boca Raton, FL.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



96:30 A. Zhou et al.

[69] Vivek Sarkar. 2000. Optimized unrolling of nested loops. In Proceedings of the 14th International Conference on Super-

computing. 153–166.

[70] Heyuan Shi, Runzhe Wang, Ying Fu, Mingzhe Wang, Xiaohai Shi, Xun Jiao, Houbing Song, Yu Jiang, and Jiaguang

Sun. 2019. Industry practice of coverage-guided enterprise Linux kernel fuzzing. In Proceedings of the 27th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.

986–995.

[71] Marius Steffens and Ben Stock. 2020. PMForce: Systematically analyzing postmessage handlers at scale. In Proceedings

of the ACM SIGSAC Conference on Computer and Communications Security. 493–505.

[72] Wei Tang, Du Chen, and Ping Luo. 2018. BCFinder: A lightweight and platform-independent tool to find third-party

components in binaries. In Proceedings of the 25th Asia-Pacific Software Engineering Conference (APSEC’18). IEEE,

288–297.

[73] Wei Tang, Ping Luo, Jialiang Fu, and Dan Zhang. 2020. LibDX: A cross-platform and accurate system to detect third-

party libraries in binary code. In Proceedings of the IEEE 27th International Conference on Software Analysis, Evolution

and Reengineering (SANER’20). IEEE, 104–115.

[74] Wei Tang, Yanlin Wang, Hongyu Zhang, Shi Han, Ping Luo, and Dongmei Zhang. 2022. LibDB: An effective and

efficient framework for detecting third-party libraries in binaries. In Proceedings of the 19th International Conference

on Mining Software Repositories. 423–434.

[75] Zhenhao Tang, Juan Zhai, Minxue Pan, Yousra Aafer, Shiqing Ma, Xiangyu Zhang, and Jianhua Zhao. 2018. Dual-

Force: Understanding webview malware via cross-language forced execution. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering. 714–725.

[76] Sharath K. Udupa, Saumya K. Debray, and Matias Madou. 2005. Deobfuscation: Reverse engineering obfuscated code.

In Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05). IEEE.

[77] Gang-Ryung Uh, Robert Cohn, Bharadwaj Yadavalli, Ramesh Peri, and Ravi Ayyagari. 2007. Analyzing dynamic

binary instrumentation overhead. Workshop on Binary Instrumentation and Application.

[78] Jeffrey D. Ullman. 1973. Fast algorithms for the elimination of common subexpressions. Act. Inform. 2 (1973),

191–213.

[79] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, and Chao Zhang. 2022. jTrans:

Jump-aware transformer for binary code similarity. arXiv preprint arXiv:2205.12713 (2022).

[80] Shuai Wang and Dinghao Wu. 2017. In-memory fuzzing for binary code similarity analysis. In Proceedings of the

32nd IEEE/ACM International Conference on Automated Software Engineering (ASE’17). IEEE.

[81] Jeffrey Wilhelm and Tzi-cker Chiueh. 2007. A forced sampled execution approach to kernel rootkit identification. In

Proceedings of the International Workshop on Recent Advances in Intrusion Detection. Springer, 219–235.

[82] Yang Xiao, Zhengzi Xu, Weiwei Zhang, Chendong Yu, Longquan Liu, Wei Zou, Zimu Yuan, Yang Liu, Aihua Piao,

and Wei Huo. 2021. VIVA: Binary level vulnerability identification via partial signature. In Proceedings of the IEEE

International Conference on Software Analysis, Evolution and Reengineering (SANER’21). IEEE, 213–224.

[83] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. 2018. VMHunt: A verifiable approach to partially-virtualized

binary code simplification. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security

(CCS’18). ACM.

[84] Liang Xu, Fangqi Sun, and Zhendong Su. 2009. Constructing precise control flow graphs from binaries. University of

California, Davis, Tech. Rep., Citeseer, 14–23.

[85] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017. Neural network-based graph embed-

ding for cross-platform binary code similarity detection. In Proceedings of the ACM SIGSAC Conference on Computer

and Communications Security (CCS’17). ACM, New York, NY.

[86] Xi Xu, Qinghua Zheng, Zheng Yan, Ming Fan, Ang Jia, and Ting Liu. 2021. Interpretation-enabled software reuse

detection based on a multi-level birthmark model. In Proceedings of the IEEE/ACM 43rd International Conference on

Software Engineering (ICSE’21). IEEE, 873–884.

[87] Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu. 2020. Patch based vulnerability matching for

binary programs. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.

376–387.

[88] Yinxing Xue, Zhengzi Xu, Mahinthan Chandramohan, and Yang Liu. 2018. Accurate and scalable cross-architecture

cross-OS binary code search with emulation. IEEE Trans. Softw. Eng. 45, 11 (2018), 1125–1149.

[89] Babak Yadegari and Saumya Debray. 2015. Symbolic execution of obfuscated code. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security (CCS’15). ACM.

[90] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015. A generic approach to automatic

deobfuscation of executable code. In Proceedings of the IEEE Symposium on Security and Privacy (SP’15). IEEE.

[91] Can Yang, Zhengzi Xu, Hongxu Chen, Yang Liu, Xiaorui Gong, and Baoxu Liu. 2022. ModX: Binary level partially

imported third-party library detection via program modularization and semantic matching. In Proceedings of the 44th

International Conference on Software Engineering. 1393–1405.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.



ARCTURUS 96:31

[92] Jia Yang, Cai Fu, Xiao-Yang Liu, Heng Yin, and Pan Zhou. 2021. Codee: A tensor embedding scheme for binary code

search. IEEE Transactions on Software Engineering 48, 7 (2021), 2224–2244.

[93] Shouguo Yang, Long Cheng, Yicheng Zeng, Zhe Lang, Hongsong Zhu, and Zhiqiang Shi. 2021. Asteria: Deep learning-

based AST-encoding for cross-platform binary code similarity detection. In Proceedings of the 51st Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN’21). IEEE, 224–236.

[94] Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer, Fei Peng, Yu Shi, Carson Harmon, and Xiangyu Zhang. 2020.

PMP: Cost-effective forced execution with probabilistic memory pre-planning. In Proceedings of the IEEE Symposium

on Security and Privacy (SP’20). IEEE, 1121–1138.

[95] Zimu Yuan, Muyue Feng, Feng Li, Gu Ban, Yang Xiao, Shiyang Wang, Qian Tang, He Su, Chendong Yu, Jiahuan Xu,

Piao Aihua, Xue Jingling, and Huo Wei. 2019. B2SFinder: Detecting open-source software reuse in COTS software.

In 34th IEEE/ACM International Conference on Automated Software Engineering (ASE’19), IEEE, 1038–1049.

[96] Hang Zhang and Zhiyun Qian. 2018. Precise and accurate patch presence test for binaries. In Proceedings of the 27th

USENIX Security Symposium (SEC’18). USENIX Association.

[97] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Locating faults through automated predicate switching. In

Proceedings of the 28th International Conference on Software Engineering. 272–281.

[98] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012. Formalizing the LLVM interme-

diate representation for verified program transformations. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. 427–440.

[99] Lei Zhao, Yuncong Zhu, Jiang Ming, Yichen Zhang, Haotian Zhang, and Heng Yin. 2020. PatchScope: Memory object

centric patch diffing. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 149–

165.

[100] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang. 2019. Neural machine translation

inspired binary code similarity comparison beyond function pairs. In Proceedings of the Network and Distributed

Systems Security Symposium (NDSS’19).

Received 2 September 2023; revised 4 December 2023; accepted 18 December 2023

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 4, Article 96. Publication date: April 2024.


